Признаки коррозионной агрессивности воды в котельных установках. Коррозионные повреждения экранных труб газомазутных котлов


Условия, в которых находятся элементы паровых котлов во время эксплуатации, чрезвычайно разнообразны.

Как показали многочисленные коррозионные испытания и промышленные наблюдения, низколегированные и даже аустенитные стали при эксплуатации котлов могут подвер­гаться интенсивной коррозии.

Коррозия металла поверхностей нагрева паровых кот­лов вызывает его преждевременный износ, а иногда приво­дит к серьезным неполадкам и авариям.

Большинство аварийных остановов котлов приходится на сквозные коррозионные поражения экранных, экономай - зерных, пароперегревательных труб и барабанов котлов. Появление даже одного коррозионного свища у прямоточ­ного котла приводит к останову всего блока, что связано с недовыработкой электроэнергии. Коррозия барабанных котлов высокого и сверхвысокого давления стала основной причиной отказов в работе ТЭЦ. 90 % отказов в работе из-за коррозионных повреждений произошло на барабанных котлах давлением 15,5 МПа. Значительное количество кор­розионных повреждений экранных труб солевых отсеков было в"зонах максимальных тепловых нагрузок.

Проведенными специалистами США обследованиями 238 котлов (блоки мощностью от 50 до 600 МВт) было зафиксировано 1719 вне­плановых простоев. Около 2/3 простоев котлов были вызваны коррози­ей, из них 20 % приходилось на коррозию парогенерирующих труб. В США внутренняя коррозия"в 1955 г. была признана серьезной проб­лемой после ввода в эксплуатацию большого числа барабанных котлов давлением 12,5-17 МПа.

К концу 1970 г. около 20 % из 610 таких котлов были поражены коррозией. В основном внутренней коррозии были подвержены экран­ные трубы, а пароперегреватели и экономайзеры поражались ею мень­ше. С улучшением качества питательной воды и переходом на режим координированного фосфатироваиия, с ростом параметров на барабан­ных котлах электростанций США вместо вязких, пластических корро­зионных повреждений происходили внезапные хрупкие разрушения экранных труб. "По состоянию на J970 т. для котлрв давлением 12,5; 14,8 и 17 МПа разрушение труб из-за коррозионных повреждений со­ставило соответственно 30, 33 и 65 % .

По условиям протекания коррозионного процесса раз­личают атмосферную коррозию, протекающую под дейст­вием атмосферных, а также влажных газов; газовую, обу­словленную взаимодействием металла с различными газа­ми - кислородом, хлором и т. д. - при высоких температу­рах, и коррозию в электролитах, в большинстве случаев протекающую в водных растворах.

По характеру коррозионных процессов котельный ме­талл может подвергаться химической и электрохимической коррозии, а также их совместному воздействию.


При эксплуатации поверхностей нагрева паровых кот­лов встречается высокотемпературная газовая коррозия в окислительной и восстановительной атмосферах топоч­ных газов и низкотемпературная электрохимическая кор­розия хвостовых поверхностей нагрева.

Исследованиями установлено, что высокотемператур­ная коррозия поверхностей нагрева наиболее интенсивно протекает лишь при наличии в топочных газах избыточного свободного кислорода и в присутствии расплавленных ок­сидов ванадия.

Высокотемпературная газовая или сульфидная корро­зия в окислительной атмосфере топочных газов поражает трубы ширмовых и конвективных перегревателей, первые ряды кипятильных пучков, металл дистанционирующих проставок между трубами, стойки и подвески.

Высокотемпературная газовая коррозия в восстановит тельной атмосфере наблюдалась на экранных трубах то­почных камер ряда котлов высокого и сверхкритического давления.

Коррозия труб поверхностей нагрева с газовой стороны представляет сложный физико-химический процесс взаимо­действия топочных газов и наружных отложений с окисны - ми пленками и металлом труб. На развитие этого процесса оказывают влияние изменяющиеся во времени интенсивные тепловые потоки и высокие механические напряжения, возникающие от внутреннего давления и самокомпенсации.

На котлах среднего и низкого давления " температура стенки экранов, определяемая температурой кипения воды, ниже, и поэтому этот вид разрушения металла не наблюда­ется.

Коррозия поверхностей нагрева со стороны дымовых газов (внешняя коррозия) есть процесс разрушения метал­ла в результате взаимодействия с продуктами сгорания, агрессивными газами, растворами и расплавами минераль­ных соединений.

Под коррозией металла понимают постепенное разру­шение металла, происходящее вследствие химического или электрохимического воздействия внешней среды.

\ Процессы разрушения металла, являющиеся следствием их непосредственного химического взаимодействия с окру­жающей средой, относятся к химической коррозии.

Химическая коррозия происходит при контакте металла с перегретым паром и сухими газами. Химическую корро­зию в сухих газах называют газовой коррозией.

В топке и газоходах котла газовая коррозия наружной поверхности труб и стоек пароперегревателей происходит под воздействием кислорода, углекислого газа, водяных паров, сернистого и других газов; внутренней поверхности труб - в результате взаимодействия с паром или водой.

Электрохимическая коррозия в отличие от химической характеризуется тем, что протекающие при ней реакции сопровождаются возникновением электрического тока.

Переносчиком электричества в растворах служат ионы, присутствующие в них из-за диссоциации молекул, а в ме­таллах - свободные электроны:

Внутрикотловая поверхность подвержена в основном электрохимической коррозии. По современным представле­ниям ее проявление обусловлено двумя самостоятельными процессами: анодным, при котором ионы металла перехо­дят в раствор в виде гидратироваиных ионов, и катодным, при котором происходит ассимиляция избыточных электро­нов деполяризаторами. Деполяризаторами могут быть ато­мы, ионы, молекулы, которые при этом восстанавливаются.

По внешним признакам различают сплошную (общую) и местную (локальную) формы коррозионных разрушений.

При общей коррозии вся соприкасающаяся поверхность нагрева с агрессивной средой подвергается разъеданию, равномерно утоняясь с внутренней или наружной стороны. При локальной коррозии разрушение происходит на от­дельных участках поверхности, остальная поверхность ме­талла не затрагивается повреждениями.

К местной локальной относят коррозию пятнами, язвен­ную, точечную, межкристаллитную, коррозионное растрес­кивание, коррозионную усталость металла.

Типичный пример разрушения от электрохимической коррозии.

Разрушение с наружной поверхности труб НРЧ 042X5 мм из ста­ли 12Х1МФ котлов ТПП-110 произошло на горизонтальном участке в нижней части подъемно-опускной петли в зоне, примыкающей к подо­вому экрану. На тыльной стороне трубы произошло раскрытие с ма­лым утонением кромок в месте разрушения. Причиной разрушения явилось утонение стенки трубы примерно на 2 мм при коррозии из-за расшлаковки струей воды. После останова котла паропроизводитель - ностью 950 т/ч, отапливаемого пылью антрацитного штыба (жидкое шлакоудаление), давлением 25,5 МПа и температурой перегретого пара 540 °С на трубах оставались мокрый шлак и зола, в которых интенсив­но протекала электрохимическая коррозия. Снаружи труба была по­крыта толстым слоем бурой гидроокиси железа Внутренний диаметр труб находился в пределах допусков на трубы котлов высокого и сверх­высокого давления. Размеры по наружному диаметру имеют отклоне­ния, выходящие за пределы минусового допуска: минимальный наруж­ный диаметр. составил 39 мм при минимально допустимом 41,7 мм. Толщина стенки вблизи места разрушения от коррозии составляла все­го 3,1 мм при номинальной толщине трубы 5 мм.

Микроструктура металла однородна по длине и окружности. На внутренней поверхности трубы имеется обезуглераженный слой, обра­зовавшийся при окислении трубы в процессе термической обработки. На наружной стороне такой слой отсутствует.

Обследования труб НРЧ после первого разрыва позволило выяс­нить причину разрушения. Было принято решение о замене НРЧ и об изменении технологии расшлаковки. В данном случае электрохимиче­ская коррозия протекала из-за наличия тонкой пленки электролита.

Язвенная коррозия протекает интенсивно на отдельных небольших участках поверхности, но часто на значитель­ную глубину. При диаметре язвин порядка 0,2-1 мм ее называют точечной.

В местах, где образуются язвины, со временем могут образоваться свищи. Язвины часто заполняются продукта­ми коррозии, вследствие чего не всегда их удается обнару­жить. Примером может служить разрушение труб стально­го экономайзера при плохой деаэрации питательной воды и низких скоростях движения воды в трубах.

Несмотря на то что поражена значительная часть ме­талла труб, из-за сквозных свищей приходится полностью заменять змеевики экономайзера.

Металл паровых котлов подвергается следующим опас­ным видам коррозии: кислородной коррозии во время ра­боты котлов и нахождения их в ремонте; межкристаллит - ной коррозии в местах упаривания котловой воды; парово­дяной коррозии; коррозионному растрескиванию элементов котлов, изготовленных из аустенитных сталей; подшламо - вой коррозии. Краткая характеристика указанных видов коррозии металла котлов приведена в табл. ЮЛ.

В процессе работы котлов различают коррозию метал­ла - коррозию под нагрузкой и стояночную коррозию.

Коррозии под нагрузкой наиболее подвержены обогре-. ваемые котельные элементы, контактирующие с двухфаз­ной средой, т. е. экранные и кипятильные трубы. Внутрен­няя поверхность экономайзеров и перегревателей при работе котлов поражается коррозией меньше. Коррозия под нагрузкой протекает и в обескислороженной среде.

Стояночная коррозия проявляется в недренируемых. элементах вертикальных змеевиков перегревателей, провис­ших трубах горизонтальных змеевиков перегревателей

Впервые наружная коррозия экранных труб была обнаружена на двух электростанциях у котлов высоко­го давления ТП-230-2, работавших на угле марки АШ и сернистом мазуте и находившихся до того в эксплуата­ции около 4 лет. Наружная поверхность труб подверга­лась коррозионному разъеданию со стороны, обращен­ной в топку, в зоне максимальной температуры факела. 88

Разрушались преимущественно трубы средней (по ширине) части топки, непосредственно над зажигатель­ным. поясом. Широкие и относительно неглубокие корро­зионные язвы имели неправильную форму и часто смы­кались между собой, вследствие чего поврежденная поверхность труб была неровной, бугристой. В середине наиболее глубоких язв появились свищи, и через них начали вырываться струи воды и пара.

Характерным было полное отсутствие такой коррозии на экранных трубах котлов среднего давления этих элек­тростанций, хотя среднего давления находились там в эксплуатации значительно "более длительное время.

В последующие годы наружная коррозия экранных труб появилась и на других котлах высокого давления, работавших на твердом топливе. Зона коррозионных разрушений распространялась иногда на значительную высоту; в отдельные местах толщина стенок труб в ре­зультате коррозии уменьшалась до 2-3 мм. Было заме­чено также, что эта коррозия практически отсутствует в котлах высокого давления, работающих на мазуте.

Наружная коррозия экранных труб была обнаружена у котлов ТП-240-1 после 4 лет эксплуатации, работающих при давлении в барабанах 185 ат. В этих котлах сжи­гался подмосковный бурый уголь, имевший влажность около 30%; мазут сжигали только при растопке. У этих котлов коррозионные разрушения также возникали в зо­не наибольшей тепловой нагрузки экранных труб. Осо­бенность процесса коррозии заключалась в том, что тру­бы разрушались как со стороны, обращенной в топку, так и со стороны, обращенной к обмуровке (рис. 62).

Эти факты показывают, что коррозия экранных труб зависит прежде всего от температуры их поверхности. У котлов среднего давления вода испаряется при темпе­ратуре около 240° С; у котлов, рассчитанных на давле­ние 110 ат, расчетная температура кипения воды равна 317° С; в котлах ТП-240-1 вода кипит при температуре 358° С. Температура наружной поверхности экранных труб обычно превышает температуру кипения примерно на 30-40° С.

Можно. предположить, что интенсивная наружная коррозия металла начинается при повышении его тем­пературы до 350° С. У котлов, рассчитанных на давле­ние 110 ат, эта температура достигается лишь с огневой стороны труб, а у котлов, имеющих давление 185 ат, она соответствует температуре воды в трубах. Именно поэтому коррозия экранных труб со стороны обмуров­ки наблюдалась только у этих котлов.

Подробное изучение вопроса было произведено на котлах ТП-230-2, работавших на одной из упомянутых электростанций . Там отбирались пробы газов и горя-

Щих частиц из факела на расстоянии около 25 мм от экранных труб. Близ фронтового экрана в зоне интен­сивной наружной коррозии труб топочные газы почти не содержали свободного кислорода. Вблизи же заднего экрана, у которого наружная коррозия труб почти от­сутствовала, свободного кислорода в газах было значи­тельно больше. Кроме того, проверка показала, что в районе образования коррозии более 70% проб газов

Можно "предположить, что в присутствии избыточно­го кислорода сероводород сгорает и коррозии не про­исходит, Но при отсутствии избыточного кислорода се­роводород вступает в химическое соединение с металлом труб. При этом образуется сульфид железа FeS. Этот продукт коррозии действительно был найден в отложе­ниях на экранных трубах.

Наружной коррозии подвержена не только углеро­дистая сталь, но и хромомолибденовая. В частности, у котлов ТП-240-1 коррозия поражала экранные трубы, изготовленные из стали марки 15ХМ.

До сих пор отсутствуют проверенные мероприятия для полного предупреждения описанного вида коррозии. Некоторое уменьшение скорости разрушения. металла до­стигалось. после наладки процесса горения, в частности при увеличении избытка воздуха в топочных газах.

27. КОРРОЗИЯ ЭКРАНОВ ПРИ СВЕРХВЫСОКОМ ДАВЛЕНИИ

В этой книге вкратце рассказано об условиях работы металла паровых котлов современных электростанций. Но прогресс энергетики в СССР продолжается, и теперь вступает в строй большое число новых котлов, рассчи­танных на более высокие давления и температуры пара. В этих условиях большое значение имеет практический опыт эксплуатации нескольких котлов ТП-240-1, рабо­тающих с 1953-1955 гг. при давлении 175 ат (185 ат в барабане). Весьма ценны, >в частности, сведения о кор­розии их экранов.

Экраны этих котлов были подвержены коррозии как с наружной, так и с внутренней стороны. Их наружная коррозия описана в предыдущем параграфе этой главы, разрушение же внутренней поверхности труб не похоже ни на один из описанных выше видов коррозии металла

Разъедание происходило в основном с огневой стороны верхней части наклонных труб холодной воронки и сопровождалось появле­нием коррозионных раковин (рис. 63,а). В дальнейшем число таких раковин увеличивалось, и возникала сплошная полоса (иногда две параллельные. полосы) разъеденного металла (рис. 63,6). Характер­ным являлось также отсутствие коррозии в зоне сварных стыков.

Внутри труб имелся налет рыхлого шлама толщиной 0,1-0,2 мм, состоявшего в основном из окислов железа и меди. Увеличение кор­розионного разрушения металла не сопровождалось увеличением толщины слоя шлама, следовательно, коррозия под слоем шлама не была основной причиной разъедания внутренней поверхности экран­ных труб.

В котловой воде поддерживался режим чистофосфатной щелоч­ности. Фосфаты вводились в котел не.непрерывно, а периодически.

Большое значение имело то обстоятельство, что температура металла труб периодически резко.повышалась и иногда была выше 600° С (рис. 64). Зона наиболее частого и максимального повыше­ния температуры совпадала с зоной наибольшего разрушения ме­талла. Снижение давления в котле до 140-165 ат (т. е. до давле­ния, при котором работают новые серийные котлы) не изменяло характера временного повышения температуры труб, но сопровож­далось значительным снижением максимального значения этой тем­пературы. Причины такого периодического повышения температуры огневой стороны наклонных труб холодной. воронки еще подробно не изучены.

В настоящей книге рассматриваются конкретные во­просы, связанные с работой стальных деталей парового котла. Но для изучения этих сугубо практических вопро­сов необходимо знать общие сведения, касающиеся строения стали и ее " свойств. В схемах, показывающих строение металлов, атомы иногда изображают в виде соприкасающихся друг с дру­гом шаров (рис. 1). Такие схемы по­казывают расстановку атомов в ме­талле, но в них трудно наглядно пока­зать расположение атомов друг отно­сительно друга.

Эрозией называется постепенное разрушение поверх­ностного слоя металла под влиянием механического воз­действия. Наиболее распространенным видом эрозии стальных элементов - парового котла является их истира­ние твердыми частицами золы, движущейся вместе с ды­мовыми газами. При длительном истирании происходит постепенное уменьшение толщины стенок труб, а затем их деформация и разрыв под действием внутреннего давления.

Введение

Корро́зия (от лат. corrosio - разъедание) - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это - разрушение любого материала - будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

4Fe + 2Н 2 О + ЗО 2 = 2(Fe 2 O 3 Н 2 О)

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии. Главная классификация производится по механизму протекания процесса. Различаются два вида: химическую коррозию и электрохимическую коррозию. В данном реферате подробно рассматривается химическая коррозия на примере судовых котельных установках малых и больших мощностей.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

1) -Газовая коррозия

2) -Коррозия в неэлектролитах

3) -Атмосферная коррозия

4) -Коррозия в электролитах

5) -Подземная коррозия

6) -Биокоррозия

7) -Коррозия блуждающим током.

По условиям протеканию коррозионного процесса различаются следущие виды:

1) -Контактная коррозия

2) -Щелевая коррозия

3) -Коррозия при неполном погружении

4) -Коррозия при полном погружении

5) -Коррозия при переменном погружении

6) -Коррозия при трении

7) -Коррозия под напряжением.

По характеру разрушения:

Сплошная коррозия, охватывающая всю поверхность:

1) -равномерная;

2) -неравномерная;

3) -избирательная.

Локальная(местная) коррозия, охватывающая отдельные участки:

1) -пятнами;

2) -язвенная;

3) -точечная(или питтинг);

4) -сквозная;

5) -межкристаллитная.

1. Химическая коррозия

Представим себе металл в процессе производства металлического проката на металлургическом заводе: по клетям прокатного стана движется раскаленная масса. Во все стороны от нее разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины – продукта химической коррозии, возникающего в результате взаимодействия металла с кислородом воздуха. Такой процесс самопроизвольного разрушения металла из-за непосредственного взаимодействия частиц окислителя и окисляемого металла, называется химической коррозией.

Химическая коррозия - взаимодействие поверхности металла с (коррозионно-активной) средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

4Fe + 3O 2 → 2Fe 2 O 3

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При химической коррозии окисление металла и восстановление окислительного компонента коррозионной среды происходят одновременно. Такая коррозия наблюдается при действии на металлы сухих газов (воздуха, продуктов горения топлива) и жидких не электролитов (нефти, бензина и т. д.) и представляет собой гетерогенную химическую реакцию.

Процесс химической коррозии происходит следующим образом. Окислительный компонент внешней среды, отнимая у металла валентные электроны, одновременно вступает с ним в химическое соединение, образуя на поверхности металла пленку (продукт коррозии). Дальнейшее образование пленки происходит за счет взаимной двусторонней диффузии через пленку агрессивной среды к металлу и атомов металла по направлению к внешней среде и их взаимодействия. При этом если образующаяся пленка обладает защитными свойствами, т. е. препятствует диффузии атомов, то коррозия протекает с самоторможением во времени. Такая пленка образуется на меди при температуре нагрева 100 °С, на никеле - при 650, на железе - при 400 °С. Нагрев стальных изделий выше 600 °С приводит к образованию на их поверхности рыхлой пленки. С повышением температуры процесс окисления идет с ускорением.

Наиболее распространенным видом химической коррозии является коррозия металлов в газах при высокой температуре - газовая коррозия. Примерами такой коррозии являются окисление арматуры печей, деталей двигателей внутреннего сгорания, колосников, деталей керосиновых ламп и окисление при высокотемпературной обработке металлов (ковке, прокате, штамповке). На поверхности металлоизделий возможно образование и других продуктов коррозии. Например, при действии сернистых соединений на железе образуются сернистые соединения, на серебре при действии паров йода - йодистое серебро и т. д. Однако чаще всего на поверхности металлов образуется слой оксидных соединений.

Большое влияние на скорость химической коррозии оказывает температура. С повышением температуры скорость газовой коррозии увеличивается. Состав газовой среды оказывает специфическое влияние на скорость коррозии различных металлов. Так, никель устойчив в среде кислорода, углекислого газа, но сильно корродирует в атмосфере сернистого газа. Медь подвержена коррозии в атмосфере кислорода, но устойчива в атмосфере сернистого газа. Хром обладает коррозионной стойкостью во всех трех газовых средах.

Для защиты от газовой коррозии используют жаростойкое легирование хромом, алюминием и кремнием, создание защитных атмосфер и защитных покрытий алюминием, хромом, кремнием и жаростойкими эмалями.

2. Химическая коррозия в судовых паровых котлах.

Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, - двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

2Ме(т) + O 2 (г) 2МеО(т); МеО(т) [МеО] (р-р)

В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга-Бэдвордса). Коэффициент a (фактор Пиллинга - Бэдвордса) у разных металлов имеет разные значения. Металлы, у которых a <1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

Сплошные и устойчивые оксидные слои образуются при a = 1,2-1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.

Фактор Пиллинга - Бэдвордса дает очень приближенную оценку, так как состав оксидных слоев имеет большую широту области гомогенности, что отражается и на плотности оксида. Так, например, для хрома a = 2,02 (по чистым фазам), но пленка оксида, образующегося на нем, весьма устойчива к действию окружающей среды. Толщина оксидной пленки на поверхности металла меняется в зависимости от времени.

Химическая коррозия, вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.

Коррозия стали в паровых котлах, протекающая под действием водяного пара, сводится, в основном, к следующей реакции:

ЗFе + 4Н20 = Fe2O3 + 4H2

Можно считать, что внутренняя поверхность котла представляет тонкую пленку магнитной окиси железа. Во время эксплуатации котла пленка окиси непрерывно разрушается и снова образуется, причем выделяется водород. Поскольку поверхностная пленка магнитной окиси железа представляет основную защиту для стали, ее следует поддерживать в состоянии наименьшей проницаемости для воды.
Для котлов, арматуры, водо- и паропроводов применяются преимущественно простые углеродистые или низколегированные стали. Коррозионной средой во всех случаях являются вода или водяной пар различной степени чистоты.
Температура, при которой может протекать коррозионный процесс, колеблется от температуры помещения, где находится бездействующий котел, до температуры кипения насыщенных растворов при работе котла, достигающей иногда 700°. Раствор может иметь температуру, значительно более высокую, чем критическая температура чистой воды (374°). Однако высокие концентрации солей в котлах встречаются редко.
Механизм, посредством которого физические и химические причины могут приводить к разрушению пленки в паровых котлах, по существу на отличается от механизма, исследованного при более низких температурах на менее ответственном оборудовании. Разница заключается в том, что скорость коррозии в котлах значительно больше вследствие высокой температуры и давления. Большая скорость теплопередачи от стенок котла к среде, достигающая 15 кал/см2сек, также усиливает коррозию.

ТОЧЕЧНАЯ КОРРОЗИЯ

Форма коррозионных раковин и их распределение на поверхности металла могут изменяться в широких пределах. Коррозионные раковины иногда образуются внутри уже существующих раковин и часто располагаются настолько близко друг к другу, что поверхность становится чрезвычайно неровной.

Распознавание точечной коррозии

Выяснение причины образования коррозионных разрушений определенного типа часто весьма затруднительно, так как одновременно могут действовать несколько причин; кроме того, ряд изменений, происходящих при охлаждении котла от высокой температуры и при спуске воды, иногда маскирует явления, имевшие место при эксплуатации. Однако опыт существенно помогает распознавать точечную коррозию в котлах. Например, было замечено, что присутствие в коррозионной раковине или на поверхности бугорка черной магнитной окиси железа указывает, что в котле протекал активный процесс. Подобными наблюдениями часто пользуются при проверке мероприятий, принятых для защиты от коррозии.
Не следует смешивать ту окись железа, которая образуется в местах активной коррозии, с черной магнитной окисью железа, присутствующей иногда в виде взвеси в котловой воде. Необходимо помнить, что ни общее количество мелкодисперсной магнитной окиси железа, ни количество выделяющегося в котле водорода не могут служить надежным признаком степени и размеров происходящей коррозии. Гидрат закиси железа, попадающий в котел из посторонних источников, например из резервуаров для конденсата или из питающих котел трубопроводов, может частично объяснить присутствие в котле как окиси железа, так и водорода. Гидрат закиси железа, поступающий с питательной водой, взаимодействует в котле по реакции.

ЗFе (ОН)2 = Fе3O4 + 2Н2О + Н2.

Причины, влияющие на развитие точечной коррозии

Посторонние примеси и напряжения. Неметаллические включения в стали, так же как и напряжения, способны создавать анодные участки на металлической поверхности. Обычно коррозионные раковины бывают разных размеров и разбросаны по поверхности в беспорядке. При наличии напряжений расположение раковин подчиняется направлению приложенного напряжения. Типичными примерами могут служить плавниковые трубки в местах, где плавники дали трещины, а также места развальцовки котельных трубок.
Растворенный кислород.
Возможно, что самым сильным активатором точечной коррозии является растворенный в воде кислород. При всех температурах, даже в щелочном растворе, кислород служит активным деполяризатором. Кроме того, в котлах легко могут возникать кислородные концентрационные элементы, особенно под окалиной или загрязнениями, где создаются застойные участки. Обычной мерой борьбы с такого рода коррозией служит деаэрация.
Растворенный угольный ангидрид.
Так как растворы угольного ангидрида имеют слабокислую реакцию, то он ускоряет коррозию в котлах. Щелочная котловая вода снижает агрессивность растворенного угольного ангидрида однако получающаяся от этого выгода не распространяется на поверхности, омываемые паром, или на трубопроводы для конденсата. Удаление угольного ангидрида вместе с растворенным кислородом путем механической деаэрации является обычным мероприятием.
Недавно были произведены попытки применить циклогексиламин с целью устранения коррозии в паропроводах и трубопроводах для конденсата отопительных систем.
Отложения на стенках котла.
Очень часто коррозионные раковины можно обнаружить вдоль наружной поверхности (или под поверхностью) таких отложений, как прокатная окалина, котельный шлам, котельная накипь, продукты коррозии, масляные пленки. Раз начавшись, точечная коррозия будет развиваться дальше, если не удалить продуктов коррозии. Этот вид местной коррозии усиливается катодным (по отношению к котельной стали) характером осадков или истощением кислорода под отложениями.
Медь в котловой воде.
Если принять во внимание большие количества медных сплавов, применяемых для вспомогательного оборудования (конденсаторы, насосы и т. п.), то нет ничего удивительного в том, что в большинстве случаев в котельных отложениях содержится медь. Она присутствует обычно в металлическом состоянии, иногда в виде окиси. Количество меди в отложениях изменяется от долей процента до почти чистой меди.
Вопрос о значении медных отложении в котельной коррозии нельзя считать решенным. Некоторые утверждают, что медь лишь присутствует при коррозионном процессе и никак на него не влияет, другие, напротив, считают, что медь, являясь катодом по отношению к стали, может способствовать точечной коррозии. Ни одна из этих точек зрения не подтверждена прямыми опытами.
Во многих случаях наблюдалась незначительная коррозия (или даже полное ее отсутствие), несмотря на то, что отложения по всему котлу содержали значительные количества металлической меди. Имеются также сведения, что при контакте меди с малоуглеродистой сталью в щелочной котловой воде, при повышенных температурах, медь разрушается скорее, чем сталь. Медные кольца, обжимающие концы развальцованных труб, медные заклепки и экраны вспомогательного оборудования, через которое проходит котловая вода, почти полностью разрушаются даже при относительно низких температурах. Ввиду этого считается, что металлическая медь не усиливает коррозии котельной стали. Отложившуюся медь можно рассматривать просто как конечный продукт восстановления окиси меди водородом в момент его образования.
Наоборот, весьма сильные коррозионные изъязвления котельного металла часто наблюдаются по соседству с отложениями, особо богатыми медью. Эти наблюдения привели к предположению, что медь, поскольку она катодна по отношению к стали, способствует точечной коррозии.
Поверхность котлов редко представляет обнаженное металлическое железо. Чаще всего на ней имеется защитный слой, состоящий преимущественно из окиси железа. Возможно, что там, где в этом слое образуются трещины, обнажается поверхность, являющаяся анодной относительно меди. В таких местах образование коррозионных раковин усиливается. Этим же можно объяснить в некоторых случаях ускоренное разъедание в тех местах, где образовалась раковина, а также сильную точечную коррозию, наблюдаемую иногда после очистки котлов с применением кислот.
Неправильный уход за бездействующими котлами.
Одной из самых частых причин образования коррозионных раковин является отсутствие надлежащего ухода за бездействующими котлами. Бездействующий котел должен содержаться либо совершенно сухим, либо наполненным водой, обработанной таким образом, чтобы коррозия была невозможна.
Вода, оставшаяся на внутренней поверхности бездействующег котла, растворяет кислород из воздуха, что приводит к образованию раковин, которые в дальнейшем явятся центрами вокруг которых будет развиваться коррозионный процесс.
Обычные инструкции по предохранению бездействующих котлов от коррозии заключаются в следующем:
1) спуск воды из еще горячего котла (около 90°); продувание котла воздухом до полного его осушения и содержание в сухом состоянии;
2) наполнение котла щелочной водой (рН = 11), содержащей избыток ионов SО3" (около 0,01%), и хранение под водяным или паровым затвором;
3) наполнение котла щелочным раствором, содержащим, соли хромовой кислоты (0,02-0,03% СгО4").
При химической очистке котлов защитный слой окиси железа будет снят во многих местах. Впоследствии эти места могут не покрыться вновь образованным сплошным слоем и на них, даже в отсутствие меди, появятся раковины. Поэтому рекомендуется немедленно после химической очистки возобновить слой окиси железа путем обработки кипящим щелочным раствором (подобно тому, как это делается для новых котлов, вступающих в эксплуатацию).

Коррозия экономайзеров

Общие положения, касающиеся котельной коррозии, в равной мере применимы и к экономайзерам. Однако экономайзер, подогревая питательную воду и располагаясь перед котлом, особенно чувствителен к образованию коррозионных раковин. Он представляет первую поверхность с высокой температурой, испытывающую на себе разрушающее действие кислорода, растворенного в питательной воде. Кроме того, вода, проходящая через экономайзер, имеет, как правило, низкое значение рН и не содержит химических замедлителей.
Борьба с коррозией экономайзеров заключается в деаэрации воды и добавке щелочи и химических замедлителей.
Иногда обработка котловой воды осуществляется пропусканием части ее через экономайзер. В этом случае следует избегать отложений шлама в экономайзере. Нужно учитывать также влияние такой рециркуляции котловой воды на качество пара.

ОБРАБОТКА КОТЛОВОЙ ВОДЫ

При обработке котловой воды с целью защиты от коррозии первостепенной задачей является образование и сохранение защитной пленки на металлических поверхностях. Сочетание добавляемых в воду веществ зависит от рабочих условий, особенно от давления, температуры, тепловой напряженности качества питательной воды. Однако для всех случаев нужно соблюдать три правила: котловая вода должна быть щелочной, не должна содержать растворенного кислорода и загрязнять поверхность нагрева.
Едкий натр лучше всего обеспечивает защиту при рН =11-12. На практике при сложном составе котловой воды наилучшие результаты получаются при рН = 11. Для котлов, работающих при давлениях ниже 17,5 кг/см2, рН обычно поддерживается в пределах, между 11,0 и 11,5. Для более высоких давлений, ввиду возможности разрушения металла в результате неправильной циркуляции и местного повышения концентрации раствора щелочи, рН обычно берется равным 10,5 - 11,0.
Для удаления остаточного кислорода широко применяются химические восстановители: соли сернистой кислоты, гидрат закиси железа и органические восстановители. Соединения двухвалентного железа очень хороши для удаления кислорода, но образуют шлам, который оказывает нежелательное влияние на теплопередачу. Органические восстановители, ввиду их неустойчивости при высоких температурах, обычно не рекомендуются для котлов, работающих при давлениях выше 35 кг/см2. Имеются данные о разложении сернистокислых солей при повышенных температурах. Однако применение их в небольших концентрациях в котлах, работающих под давлением вплоть до 98 кг/см2, широко практикуется. Многие установки высокого давления работают вообще без химической деаэрации.
Стоимость специального оборудования для деаэрации, несмотря на несомненную его пользу, не всегда оправдывается для малых установок, работающих при сравнительно низких давлениях. При давлениях ниже 14 кг/см2 частичная деаэрация в подогревателях питательной воды может довести содержание растворенного кислорода приблизительно до 0,00007%. Добавка химических восстановителей дает хорошие результаты, особенно, когда рН воды выше 11, а вещества, связывающие кислород, добавляются до поступления воды в котел, что обеспечивает поглощение кислорода вне котла.

КОРРОЗИЯ В КОНЦЕНТРИРОВАННОЙ КОТЛОВОЙ ВОДЕ

Низкие концентрации едкого натра (порядка 0,01%) способствуют сохранению окисного слоя на стали в состоянии, надежно обеспечивающем защиту от коррозии. Местное повышение концентрации вызывает сильную коррозию.
Участки котельной поверхности, на которых концентрация щелочи достигает опасной величины, обычно характеризуются избыточным, по отношению к циркулирующей воде, подводом тепла. Обогащенные щелочью зоны у поверхности металла могут возникать в разных местах котла. Коррозионные изъязвления расположены в виде полос или удлиненных участков, иногда гладких, а иногда наполненных твердой и плотной магнитной окисью.
Трубки, расположенные горизонтально или слегка наклонно и подверженные интенсивному действию излучения сверху, разъедаются внутри, вдоль верхней образующей. Подобные случаи наблюдались в котлах большой мощности, а также воспроизводились при специально поставленных опытах.
Трубки, в которых циркуляция воды неравномерна или нарушается при большой нагрузке котла, могут подвергаться разрушению вдоль нижней образующей. Иногда коррозия более резко выражена вдоль переменного уровня воды на боковых поверхностях. Часто можно наблюдать обильные скопления магнитной окиси железа-иногда рыхлые, иногда представляющие плотные массы.
Перегрев стали часто усиливает разрушение. Это может произойти в результате образования прослойки пара в верхней части наклонной трубки. Образование паровой рубашки возможно и в вертикальных трубках при усиленном подводе тепла, на что указывает измерение температуры в различных местах трубок во время работы котла. Характерные данные, полученные при этих измерениях, представлены на рис. 7. Ограниченные участки перегрева в вертикальных трубках, имеющих нормальную температуру выше и ниже „горячего места", возможно являются результатом пленочного кипения воды.
Всякий раз, как на поверхности котельной трубки образуется пузырек пара, температура металла под ним повышается.
Повышение концентрации щелочи в воде должно происходить на поверхности раздела: пузырек пара - вода - поверхность нагрева. На рис. показано, что даже незначительное повышение температуры водяной пленки, соприкасающейся с металлом и с расширяющимся пузырьком пара, приводит к концентрации едкого натра, измеряемой уже процентами а не миллионными долями. Пленка воды, обогащенной щелочью, образующаяся в результате появления каждого пузырька пара, влияет на малый участок металла и в течение весьма короткого времени. Тем не менее, суммарное действие пара на поверхность нагрева может быть уподоблено непрерывному действию концентрированного раствора щелочи, несмотря на то, что общая масса воды содержит всего лишь миллионные доли едкого натра. Было сделано несколько попыток найти разрешение вопроса, связанного с местным повышением концентрации едкого натра на поверхностях нагрева. Так предлагалось добавлять к воде нейтральные соли (например, хлористые металлы) в большей концентрации, чем едкий натр. Однако лучше всего вовсе исключить добавку едкого натра и обеспечить необходимую величину рН введением гидролизующихся солей фосфорной кислоты. Зависимость между рН раствора и концентрацией фосфорнонатриевой соли представлена на рис. Несмотря на то, что вода, содержащая фосфорнонатриевую соль, имеет высокое значение рН, ее можно упаривать без значительного повышения концентрации гидроксильных ионов.
Следует, однако, помнить, что исключение действия едкого натра означает только, что удален один фактор, ускоряющий коррозию. Если в трубках образуется паровая рубашка, то хотя бы вода и не содержала щелочи, коррозия все же возможна, хотя и в меньшей степени, чем в присутствии едкого натра. Решение задачи следует искать также путем изменения конструкции, учитывая в то же время тенденцию к постоянному увеличению энергетической напряженности поверхностей нагрева, что, в свою очередь, безусловно усиливает коррозию. Если температура тонкого слоя воды, непосредственно у нагревающей поверхности трубки, превосходит среднюю температуру воды в грубке хогя бы на малую величину, в таком слое может относительно сильно вырасти концентрация едкого натра. Кривая приблизительно показывает условия равновесия в растворе, содержащем только едкий натр. Точные данные зависят, до некоторой степени, от давления в котле.

ЩЕЛОЧНАЯ ХРУПКОСТЬ СТАЛИ

Щелочную хрупкость можно определить, как появление трещин в районе заклепочных швов или в других местах соединений, где возможно скопление концентрированного раствора щелочи и где имеются высокие механические напряжения.
Наиболее серьезные повреждения почти всегда происходят в районе заклепочных швов. Иногда они приводят к взрыву котла; чаще приходится производить дорогостоящий ремонт даже сравнительно новых котлов. Одна американская железная дорога за год зарегистрировала образование трещин у 40 паровозных котлов, что потребовало ремонта стоимостью около 60000 долларов. Появление хрупкости было установлено также на трубках в местах развальцовки, на связях, коллекторах и в местах резьбовых соединений.

Напряжение, необходимое для возникновения щелочной хрупкости

Практика показывает малую вероятность хрупкого разрушения обычной котельной стали, если напряжения не превышают предела текучести. Напряжения, создаваемые давлением пара или равномерно распределенной нагрузкой от собственного веса сооружения, не могут привести к образованию трещин. Однако напряжения, создаваемые прокаткой листового материала, предназначенного для изготовления котлов, деформацией во время клепки или любой холодной обработкой, сопряженной с остаточной деформацией, могут вызвать образование трещин.
Наличие прилагаемых извне напряжений необязательно для образования трещин. Образец котельной стали, предварительно выдержанный при постоянном изгибающем напряжении, а затем освобожденный, может дать трещину в щелочном растворе, концентрация которого равняется повышенной концентрации щелочи в котловой воде.

Концентрация щелочи

Нормальная концентрация щелочи в барабане котла не может вызвать образования трещин, потому что она не превышает 0,1% NaОН, а наименьшая концентрация, при которой наблюдается щелочная хрупкость, выше нормальной приблизительно в 100 раз.
Такие высокие концентрации могут получаться в результате чрезвычайно медленного просачивания воды через заклепочный шов или какой-либо другой зазор. Это объясняет появление твердых солей снаружи большинства заклепочных швов в паровых котлах. Наиболее опасной течью является такая, которую трудно обнаружить Она оставляет осадок твердого вещества внутри заклепочного шва, где имеются высокие остаточные напряжения. Совместное действие напряжения и концентрированного раствора может вызвать появление трещин щелочной хрупкости.

Устройство для выявления щелочной хрупкости

Специальное устройство для контроля состава воды воспроизводит процесс упаривания воды с повышением концентрации щелочи на напряженном стальном образце в тех же условиях, в которых это происходит в районе заклепочнох шва. Растрескивание контрольного образца указывает, что котловая вода данного состава способна вызвать щелочную хрупкость. Следовательно, в таком случае необходима обработка воды, устраняющая ее опасные свойства. Однако растрескивание контрольного образца еще не означает, что в котле уже появились или появятся трещины. В заклепочных швах или в других местах соединений необязательно имеются одновременно и течь (пропаривание), и напряжение, и повышение концентрации щелочи, как у контрольного образца.
Контрольное устройство устанавливается непосредственно на паровом котле и позволяет судить о качестве котловой воды.
Испытание длится 30 и более дней при постоянной циркуляции воды через контрольное устройство.

Распознавание трещин щелочной хрупкости

Трещины щелочной хрупкости в обычной котельной стали носят иной характер, чем усталостные трещины или трещины, образовавшиеся вследствие высоких напряжений. Это иллюстрируется рис. I9, который показывает межкристаллитный характер таких трещин, образующих тонкую сетку. Разницу между межкристаллитными трещинами щелочной хрупкости и внутрикристаллитными трещинами, вызванными коррозионной усталостью, можно видеть при сравнении.
В легированных сталях (например, никелевых или кремнемарганцовистых), применяемых для паровозных котлов, трещины также располагаются сеткой, но не всегда проходят между кристаллитами, как в случае обыкновенной котельной стали.

Теория щелочной хрупкости

Атомы в кристаллической решетке металла, находящиеся на границах кристаллитов, испытывают менее симметричное воздействие своих соседей, чем атомы в остальной массе зерна. Поэтому они легче покидают кристаллическую решетку. Можно думать, что при тщательном подборе агрессивной среды удастся осуществить такое избирательное удаление атомов с границ кристаллитов. Действительно, опыты показывают, что в кислых, нейтральных (с помощью слабого электрического тока, создающего условия, благоприятные для коррозии) и концентрированных растворах щелочи можно получить межкристаллитное растрескивание. Если раствор, вызывающий общую коррозию, изменен добавкой какого-либо вещества, образующего защитную пленку на поверхности кристаллитов, коррозия сосредоточивается на границах между кристаллитами.
Агрессивным раствором в рассматриваемом случае является раствор едкого натра. Кремненатриевая соль может защищать поверхности кристаллитов, не действуя при этом на границы между ними. Результат совместного защитного и агрессивного действия зависит от многих обстоятельств: концентрации, температуры, напряженного состояния металла и состава раствора.
Существуют также коллоидная теория щелочной хрупкости и теория действия водорода, растворяющегося в стали.

Способы борьбы с щелочной хрупкостью

Одним из способов борьбы с щелочной хрупкостью является замена клепки котлов сваркой, что исключает возможность образования течи. Хрупкость можно устранить также примене нием стали, стойкой против межкристаллитной коррозии, или химической обработкой котловой воды. В клепаных котлах, применяемых в настоящее время, последний способ является единственно приемлемым.
Предварительные испытания с применением контрольного образца представляют наилучший способ определения действенности тех или иных защитных добавок к воде. Сернистонатриевая соль не предупреждает растрескивания. Азотнонатриевая соль успешно применяется для предохранения от растрескивания при давлениях до 52,5 кг/см2. Концентрированные растворы азотнонатриевой соли, кипящие при атмосферном давлении, могут вызывать коррозионные трещины при напряжении мягкой стали.
В настоящее время азотнонатриевая соль широко применяется в стационарных котлах. Концентрация азотнонатриевой соли отвечает 20- 30% от концентрации щелочи.

КОРРОЗИЯ ПАРОПЕРЕГРЕВАТЕЛЕЙ

Коррозия на внутренних поверхностях трубок пароперегревателей обусловлена прежде всего взаимодействием между металлом и паром при высокой температуре и в меньшей степени - уносом солей котловой воды паром. В последнем случае на металлических стенках могут образовываться пленки растворов с высокой концентрацией едкого натра, непосредственно разъедающие сталь или же дающие отложения, спекающиеся на стенке трубок, что может привести к образованию отдулин. В бездействующих котлах и в случаях конденсации пара в относительно холодных пароперегревателях может развиваться точечная коррозия под влиянием кислорода и угольного ангидрида.

Водород, как мера скорости коррозии

Температура пара в современных котлах приближается к температурам, применяемым в промышленном производстве водорода прямой реакцией между паром и железом.
О скорости коррозии труб из углеродистой и легированной сталей под действием пара, при температурах до 650°, можно судить по объему выделяющегося водорода. Иногда пользуются выделением водорода, как мерилом общей коррозии.
В последнее время на силовых станциях США применяются три типа миниатюрных установок для удаления газов и воздуха. Они обеспечивают полное удаление газов, а дегазированный конденсат пригоден для определения в нем солей, уносимых паром из котла. Приближенная величина общей коррозии пароперегревателя во время работы котла может быть получена определением разности концентраций водорода в пробах пара, взятых до и после прохода его через пароперегреватель.

Коррозия, вызываемая примесями в паре

Насыщенный пар, входящий в пароперегреватель, уносит с собой малые, но измеримые количества газов и солей из котловой воды. Наиболее часто встречающиеся газы - кислород, аммиак и двуокись углерода. При прохождении пара через пароперегреватель ощутимого изменения концентрации этих газов не наблюдается. Только незначительная коррозия металлического пароперегревателя может быть отнесена за счет действия этих газов. До сих пор еще не доказано, что соли, растворенные в воде, в сухом виде или осажденные на элементах пароперегревателя, могут способствовать коррозии. Однако едкий натр, будучи основной составной частью увлекаемых котловой водой солей, может способствовать коррозии сильно нагретой трубки, особенно если щелочь пристает к металлической стенке.
Повышение чистоты насыщенного пара достигается предварительным тщательным удалением газов из питательной воды. Уменьшение количества солей, увлекаемых паром, достигается тщательной очисткой в верхнем коллекторе, применением механических сепараторов, промывкой насыщенного пара питательной водой или подходящей химической обработкой воды.
Определение концентрации и природы газов, увлекаемых насыщенным паром, осуществляется применением указанных выще устройств и химическим анализом. Определение концентрации солей в насыщенном паре удобно производить путем измерения электропроводности воды или испарения большого количества конденсата.
Предложен улучшенный способ измерения электропроводности, даны соответствующие поправки на некоторые растворенные газы. Конденсат в упомянутых выше миниатюрных установках для удаления газов также может быть использован для измерения электропроводности.
Когда котел бездействует, пароперегреватель представляет собой холодильник, в котором скапливается конденсат; в этом случае возможна обычная подводная точечная коррозия, если пар содержал кислород или двуокись углерода.

Популярные статьи



Идентификация видов коррозии затруднена, и, следовательно, нередки ошибки при определении технологически и экономически оптимальных мер противодействия коррозии. Основные необходимые меры предпринимаются в соответствии с нормативными документами, где установлены пределы главных инициаторов коррозии.

ГОСТ 20995-75 «Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара» нормирует показатели в питательной воде: прозрачность, то есть количество взвешенных примесей; общая жесткость, содержание соединений железа и меди - предотвращение накипеобразования и железо- и медноокисных отложений; значение рН - предотвращение щелочной и кислотной коррозии и также пенообразования в барабане котла; содержание кислорода - предотвращение кислородной коррозии; содержание нитритов - предотвращение нитритной коррозии; содержание нефтепродуктов - предотвращение пенообразования в барабане котла.

Значения норм определены ГОСТом в зависимости от давления в котле (следовательно, от температуры воды), от мощности локального теплового потока и от технологии водоподготовки.

При исследовании причин коррозии, прежде всего, необходимо проводить осмотр (где это доступно) мест разрушения металла, анализ условий работы котла в предаварийный период, анализ качества питательной воды, пара и отложений, анализ конструктивных особенностей котла.

При внешнем осмотре можно подозревать следующие виды коррозии.

Кислородная коррозия

: входные участки труб стальных экономайзеров; питательные трубопроводы при встрече с недостаточно обескислороженной (выше нормы) водой - «прорывы» кислорода при плохой деаэрации; подогреватели питательной воды; все влажные участки котла во время его остановки и непринятия мер по предотвращению поступления воздуха в котел, особенно в застойных участках, при дренировании воды, откуда трудно удалить конденсат пара или полностью залить водой, например вертикальные трубы пароперегревателей. Во время простоев коррозия усиливается (локализируется) в присутствии щелочи (менее 100 мг/л).

Кислородная коррозия редко (при содержании кислорода в воде, значительном превышающем норму, - 0,3 мг/л) проявляется в паросепарационных устройствах барабанов котлов и на стенке барабанов на границе уровня воды; в опускных трубах. В подъемных трубах коррозия не проявляется из-за деаэрирующего действия паровых пузырьков.

Вид и характер повреждения . Язвы различной глубины и диаметра, часто покрытые бугорками, верхняя корка которых - красноватые окислы железа (вероятно, гематит Fе 2 О 3). Свидетельство активной коррозии: под коркой бугорков - черный жидкий осадок, наверное, магнетит (Fе 3 О 4) в смеси с сульфатами и хлоридами. При затухшей коррозии под коркой - пустота, а дно язвы покрыто отложениями накипи и шлама.

При рН воды > 8,5 - язвы редкие, но более крупные и глубокие, при рН < 8,5 - встречаются чаще, но меньших размеров. Только вскрытие бугорков помогает интерпретировать бугорки не как поверхностные отложения, а как следствие коррозии.

При скорости воды более 2 м/с бугорки могут принять продолговатую форму в направлении движения струи.

. Магнетитные корки достаточно плотные и могли бы служить надежным препятствием для проникновения кислорода внутрь бугорков. Но они часто разрушаются в результате коррозионной усталости, когда циклично изменяется температура воды и металла: частые остановы и пуски котла, пульсирующее движение пароводяной смеси, расслоение пароводяной смеси на отдельные пробки пара и воды, следующие друг за другом.

Коррозия усиливается с ростом температуры (до 350 °С) и увеличением содержания хлоридов в котловой воде. Иногда коррозию усиливают продукты термического распада некоторых органических веществ питательной воды.

Рис. 1. Внешний вид кислородной коррозии

Щелочная (в более узком смысле - межкристаллитная) коррозия

Места коррозионного повреждения металла . Трубы в зонах теплового потока большой мощности (район горелок и напротив вытянутого факела) - 300-400 кВт/м 2 и где температура металла на 5-10 °С выше температуры кипения воды при данном давлении; наклонные и горизонтальные трубы, где слабая циркуляция воды; места под толстыми отложениями; зоны вблизи подкладных колец и в самих сварных швах, например, в местах приварки внутрибарабанных паросепарационных устройств; места около заклепок.

Вид и характер повреждения . Полусферические или эллиптические углубления, заполненные продуктами коррозии, часто включающие блестящие кристаллы магнетита (Fе 3 О 4). Большая часть углублений покрыта твердой коркой. На стороне труб, обращенных к топке, углубления могут соединяться, образуя так называемую коррозионную дорожку шириной 20-40 мм и длиной до 2-3 м.

Если корка недостаточно устойчива и плотна, то коррозия может привести - в условиях механического напряжения - к появлению трещин в металле, особенно около щелей: заклепки, вальцовочные соединения, места приварки паросепарационных устройств.

Причины коррозионного повреждения . При высоких температурах - более 200 °С - и большой концентрации едкого натра (NаОН) - 10 % и более - защитная пленка (корка) на металле разрушается:

4NаОН + Fе 3 О 4 = 2NаFеО 2 + Nа 2 FеО 2 + 2Н 2 О (1)

Промежуточный продукт NаFеО 2 подвергается гидролизу:

4NаFеО 2 + 2Н 2 О = 4NаОН + 2Fe 2 О 3 + 2Н 2 (2)

То есть в этой реакции (2) едкий натр восстанавливается, в реакциях (1), (2) не расходуется, а выступает в качестве катализатора.

Когда магнетит удален, то едкий натр и вода могут реагировать с железом непосредственно с выделением атомарного водорода:

2NаОН + Fе = Nа 2 FеО 2 + 2Н (3)

4Н 2 О + 3Fе = Fе 3 О 4 + 8Н (4)

Выделяющийся водород способен диффундировать внутрь металла и образовывать с карбидом железа метан (CH 4):

4Н + Fе 3 С = СН 4 + 3Fе (5)

Возможно также объединение атомарного водорода в молекулярный (Н + Н = Н 2).

Метан и молекулярный водород не могут проникать внутрь металла, они скапливаются на границах зерен и при наличии трещин расширяют и углубляют их. Кроме того, эти газы препятствуют образованию и уплотнению защитных пленок.

Концентрированный раствор едкого натра образуется в местах глубокого упаривания котловой воды: плотные накипные отложения солей (вид подшламовой коррозии); кризис пузырькового кипения, когда образуется устойчивая паровая пленка над металлом - там металл почти не повреждается, но по краям пленки, где идет активное испарение, едкий натр концентрируется; наличие щелей, где идет испарение, отличное от испарения во всем объеме воды: едкий натр испаряется хуже, чем вода, не размывается водой и накапливается. Действуя на металл, едкий натр образует на границах зерен щели, направленные внутрь металла (вид межкристаллитной коррозии - щелевая).

Межкристаллитная коррозия под влиянием щелочной котловой воды чаще всего концентрируется в барабане котла.


Рис. 3. Межкристаллитная коррозия: а - микроструктура металла до коррозии, б - микроструктура на стадии коррозии, образование трещин по границе зерен металла

Такое коррозионное воздействие на металл возможно только при одновременном наличии трех факторов:

  • местные растягивающие механические напряжения, близкие или несколько превышающие предел текучести, то есть 2,5 МН/мм 2 ;
  • неплотные сочленения деталей барабана (указаны выше), где может происходить глубокое упаривание котловой воды и где накапливающийся едкий натр растворяет защитную пленку оксидов железа (концентрация NаОН более 10 %, температура воды выше 200 °С и - особенно - ближе к 300 °С). Если котел эксплуатируется с давлением меньшим, чем паспортное (например, 0,6-0,7 МПа вместо 1,4 МПа), то вероятность этого вида коррозии уменьшается;
  • неблагоприятное сочетание веществ в котловой воде, в которой отсутствуют необходимые защитные концентрации ингибиторов этого вида коррозии. В качестве ингибиторов могут выступать натриевые соли: сульфаты, карбонаты, фосфаты, нитраты, сульфитцеллюлозный щелок.


Рис. 4. Внешний вид межкристаллитной коррозии

Коррозионные трещины не развиваются, если соблюдается отношение:

(Nа 2 SО 4 + Nа 2 СО 3 + Nа 3 РО 4 + NаNО 3)/(NaOH) ≥ 5, 3 (6)

где Nа 2 SО 4 , Nа 2 СО 3 , Nа 3 РО 4 , NаNO 3 , NaOH - содержание соответственно натрий сульфата, натрий карбоната, натрий фосфата, натрий нитрата и натрий гидроксида, мг/кг.

В изготавливаемых в настоящее время котлах по крайней мере одно из указанных условий возникновения коррозии отсутствует.

Наличие в котловой воде кремниевых соединений также может усиливать межкристаллитную коррозию.

NаСl в данных условиях - не ингибитор коррозии. Выше было показано: ионы хлора (Сl -) - ускорители коррозии, из-за большой подвижности и малых размеров они легко проникают через защитные окисные пленки и дают с железом хорошо растворимые соли (FеСl 2 , FеСl 3) вместо малорастворимых оксидов железа.

В воде котельных традиционно контролируют значения общей минерализации, а не содержание отдельных солей. Вероятно, по этой причине было введено нормирование не по указанному соотношению (6), а по значению относительной щелочности котловой воды:

Щ кв отн = Щ ов отн = Щ ов 40 100/S ов ≤ 20, (7)

где Щ кв отн - относительная щелочность котловой воды, %; Щ ов отн - относительная щелочность обработанной (добавочной) воды, %; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л.

Общая щелочность обработанной (добавочной) воды может быть принята равной, ммоль/л:

  • после натрий-катионирования - общей щелочности исходной воды;
  • после водород-натрий-катионирования параллельного - (0,3-0,4), или последовательного с «голодной» регенерацией водород-катионитного фильтра - (0,5-0,7);
  • после натрий-катионирования с подкислением и натрий-хлор-ионирования - (0,5-1,0);
  • после аммоний-натрий-катионирования - (0,5-0,7);
  • после известкования при 30-40 °С - (0,35-1,0);
  • после коагулирования - (Щ о исх - Д к), где Щ о исх - общая щелочность исходной воды, ммоль/л; Д к - доза коагулянта, ммоль/л;
  • после содоизвесткования при 30-40 °С - (1,0-1,5), а при 60-70 °С - (1,0-1,2).

Значения относительной щелочности котловой воды по нормам Ростехнадзора принимаются, %, не более:

  • для котлов с клепаными барабанами - 20;
  • для котлов со сварными барабанами и ввальцованными в них трубами - 50;
  • для котлов со сварными барабанами и приваренными к ним трубами - любое значение, не нормируется.


Рис. 4. Результат межкристаллитной коррозии

По нормам Ростехнадзора Щ кв отн - один из критериев безопасной работы котлов. Правильнее проверять критерий потенциальной щелочной агрессивности котловой воды, который не учитывает содержание иона хлора:

К щ = (S ов - [Сl - ])/40 Щ ов, (8)

где К щ - критерий потенциальной щелочной агрессивности котловой воды; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л; Сl - - содержание хлоридов в обработанной (добавочной) воде, мг/л; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л.

Значение К щ можно принимать:

  • для котлов с клепаными барабанами давлением более 0,8 МПа ≥ 5;
  • для котлов со сварными барабанами и ввальцованными в них трубами давлением более 1,4 МПа ≥ 2;
  • для котлов со сварными барабанами и приваренными к ним трубами, а также для котлов со сварными барабанами и ввальцованными в них трубами давлением до 1,4 МПа и котлов с клепаными барабанами давлением до 0,8 МПа - не нормировать.

Подшламовая коррозия

Под этим названием объединяют несколько разных видов коррозии (щелочная, кислородная и др.). Накопление в разных зонах котла рыхлых и пористых отложений, шлама вызывает коррозию металла под шламом. Главная причина: загрязнение питательной воды окислами железа.

Нитритная коррозия

. Экранные и кипятильные трубы котла на стороне, обращенной в топку.

Вид и характер повреждений . Редкие, резко ограниченные крупные язвы.

. При наличии в питательной воде нитритных ионов (NО - 2) более 20 мкг/л, температуре воды более 200 °С, нитриты служат катодными деполяризатрами электрохимической коррозии, восстанавливаясь до НNО 2 , NО, N 2 (см. выше).

Пароводяная коррозия

Места коррозионных повреждений металла . Выходная часть змеевиков пароперегревателей, паропроводы перегретого пара, горизонтальные и слабонаклонные парогенерирующие трубы на участках плохой циркуляции воды, иногда по верхней образующей выходных змеевиков кипящих водяных экономайзеров.

Вид и характер повреждений . Налеты плотных черных оксидов железа (Fе 3 О 4), прочно сцепленных с металлом. При колебаниях температуры сплошность налета (корки) нарушается, чешуйки отваливаются. Равномерное утончение металла с отдулинами, продольными трещинами, разрывами.

Может идентифицироваться в качестве подшламовой коррозии: в виде глубоких язв с нечетко отграниченными краями, чаще возле выступающих внутрь трубы сварных швов, где скапливается шлам.

Причины коррозионных повреждений :

  • омывающая среда - пар в пароперегревателях, паропроводах, паровые «подушки» под слоем шлама;
  • температура металла (сталь 20) более 450 °С, тепловой поток на участок металла - 450 кВт/м 2 ;
  • нарушение топочного режима: зашлаковывание горелок, повышенное загрязнение труб внутри и снаружи, неустойчивое (вибрационное) горение, удлинение факела по направлению к трубам экранов.

В результате: непосредственное химическое взаимодействие железа с водяным паром (см. выше).

Микробиологическая коррозия

Вызывается аэробными и анаэробными бактериями, появляется при температурах 20-80 °С.

Места повреждений металла . Трубы и емкости до котла с водой указанной температуры.

Вид и характер повреждений . Бугорки разных размеров: диаметр от нескольких миллиметров до нескольких сантиметров, редко - несколько десятков сантиметров. Бугорки покрыты плотными оксидами железа - продукт жизнедеятельности аэробных бактерий. Внутри - порошок и суспензия черного цвета (сульфид железа FеS) - продукт сульфатвосстанавливающих анаэробных бактерий, под черным образованием - круглые язвы.

Причины повреждений . В природной воде всегда присутствуют сульфаты железа, кислород и разные бактерии.

Железобактерии в присутствии кислорода образуют пленку оксидов железа, под ней анаэробные бактерии восстанавливают сульфаты до сульфида железа (FеS) и сероводорода (Н 2 S). В свою очередь, сероводород дает старт образованию сернистой (очень нестойкой) и серной кислот, и металл корродирует.

На коррозию котла этот вид оказывает косвенное влияние: поток воды при скорости 2-3 м/с срывает бугорки, уносит их содержимое в котел, увеличивая накопление шлама.

В редких случаях возможно протекание этой коррозии в самом котле, если во время длительной остановки котла в резерв он заполняется водой с температурой 50-60 о С, и температура поддерживается за счет случайных прорывов пара из соседних котлов.

«Хелатная» коррозия

Места коррозионного повреждения . Оборудование, в котором пар отделяется от воды: барабан котла, паросепарационные устройства в барабане и вне его, также - редко - в трубопроводах питательной воды и экономайзере.

Вид и характер повреждения . Поверхность металла - гладкая, но если среда движется с большой скоростью, то корродированная поверхность - негладкая, имеет подковообразные углубления и «хвосты», ориентированные в направлении движения. Поверхность покрыта тонкой матовой или черной блестящей пленкой. Явных отложений нет, нет и продуктов коррозии, потому что «хелат» (специально вводимые в котел органические соединения полиаминов) уже прореагировал.

В присутствии кислорода, что в нормально работающем котле случается редко, коррозированная поверхность - «взбодренная»: шероховатости, островки металла.

Причины коррозионного повреждения . Механизм действия «хелата» описан ранее («Промышленные и отопительные котельные и мини-ТЭЦ», 1(6)΄ 2011, с.40).

«Хелатная» коррозия возникает при передозировке «хелата», но и при нормальной дозе возможна, так как «хелат» концентрируется в зонах, где идет интенсивное испарение воды: пузырьковое кипение заменяется пленчатым. В паросепарационных устройствах бывают случаи особенно разрушительного действия «хелатной» коррозии из-за больших турбулентных скоростей воды и пароводяной смеси.

Все описанные коррозионные повреждения могут иметь синэнергетический эффект, так что суммарный ущерб от совместного действия разных факторов коррозии может превысить сумму ущерба от отдельных видов коррозии.

Как правило, действие коррозионных агентов усиливает нестабильный тепловой режим котла, что вызывает коррозионную усталость и возбуждает термоусталостную коррозию: число пусков из холодного состояния - более 100, общее число пусков - более 200. Так как эти виды разрушений металла проявляются редко, то трещины, разрыв труб имеют вид, идентичный поражениям металла от разных видов коррозии.

Обычно для идентификации причины разрушения металла требуются дополнительно металлографические исследования: рентгенография, ультразвук, цветная и магнито-порошковая дефектоскопия.

Разными исследователями были предложены программы диагностирования видов коррозионных повреждений котельных сталей. Известны программа ВТИ (А.Ф. Богачев с сотрудниками) - в основном для энергетических котлов высокого давления, и разработки объединения «Энергочермет» - в основном для энергетических котлов низкого и среднего давления и котлов-утилизаторов.