Экспериментальные исследования энергетической эффективности сверхединичных синхронных генераторов на постоянных магнитах. Синхронные генераторы с постоянными магнитами Генераторы тока возбуждение постоянные магниты



Владельцы патента RU 2548662:

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов. Технический результат: стабилизация выходного напряжения и активной мощности. Синхронный генератор с возбуждением от постоянных магнитов содержит несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии. Магнитопровод снабжен размещенными на полюсных выступах электрическими катушками с многофазной якорной обмоткой статора. Кольцевой ротор установлен на опорном валу с возможностью вращения в опорных подшипниках вокруг кольцевого магнитопровода статора. На внутренней боковой стенке ротора смонтирован кольцевой магнитный вкладыш с чередующимися в окружном направлении магнитными полюсами из р-пар. Магнитный вкладыш выполнен в виде двух одинаковых колец, имеющих возможность перемещения в осевом направлении. Между кольцами расположен упругий элемент. 2 ил.

Изобретение относится к области электротехники и электромашиностроения, в частности к синхронным генераторам с возбуждением от постоянных магнитов, и может быть использовано в автономных источниках электропитания как стандартной промышленной частоты, так и повышенной частоты, в электрических машинах и энергоустановках. В частности, заявляемый синхронный генератор может быть использован в качестве автономного источника энергии на автомобилях, катерах и других транспортных средствах.

Известен синхронный генератор, содержащий статор с системой проводников и ротор, имеющий систему возбуждения с постоянными магнитами, причем между статором и ротором находится активная поверхность - воздушный зазор, ротор выполнен в виде наружного ротора с активной поверхностью с внутренней стороны, ротор имеет, если смотреть по направлению вращательного движения, чередующиеся друг с другом по направлению вращения намагниченные постоянные магниты и участки из магнитопроводного материала, постоянные магниты выполнены из материала с магнитной проницаемостью, близкой к проницаемости воздуха, постоянные магниты, если измерять в направлении вращения, имеют увеличивающуюся с увеличением расстояния от активной поверхности ширину, а магнитопроводные участки - уменьшающуюся с увеличением расстояния от активной поверхности ширину, магнитопроводные участки имеют поверхность, через которую выходит магнитный поток и которая обращена к активной поверхности, причем она меньше, чем сумма поверхностей поперечного сечения магнитного потока обоих примыкающих к ней постоянных магнитов, в результате чего магнитный поток постоянных магнитов концентрируется к активной поверхности полюса статора, если измерять в направлении вращения, имеют почти такую же ширину, как поверхность магнитопроводных участков, через которую выходит магнитный поток (патент РФ №2141716, МПК Н02K 21/12, опубликовано 20.11.1991).

Известен синхронный генератор, содержащий многополюсный якорь, имеющий n полюсов (n - целое число) с обмотками, и систему возбуждения, образованную множеством постоянных магнитов. При этом постоянные магниты имеют (n-1) полюсов для создания магнитного поля возбуждения при вращении относительно якоря, причем постоянные магниты намагничены вдоль направления вращения, а полюса выполнены со скосом относительно вращения системы возбуждения (патент РФ №2069441, МПК Н02K 21/22, опубликовано 20.11.1996).

Общим недостатком данных синхронных генератора являются ограниченные функциональные возможности по стабилизации при увеличении нагрузки выходного напряжения и активной мощности, зависящих от величины общего магнитного потока. При этом в конструктивном исполнении данных генераторов отсутствуют элементы, позволяющие оперативно изменять величину общего магнитного потока, создаваемого отдельными постоянными магнитами кольцевого магнитного вкладыша.

Наиболее близким аналогом (прототипом) изобретения является синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженный размещенными на полюсных выступах электрическими катушками с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из р-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки кольцевого магнитопровода статора. Несущий узел статора выполнен из группы одинаковых модулей с кольцевым магнитопроводом и кольцевым ротором, смонтированными на одном опорном валу, при этом модули несущего узла статора установлены с возможностью их разворота друг относительно друга вокруг оси, соосной с опорным валом, и снабжены кинематически связанным с ними приводом углового разворота их друг относительно друга, а одноименные фазы якорных обмоток в модулях несущего узла статора соединены между собой, образуя общие фазы якорной обмотки статора (патент РФ №2273942, МПК Н02K 21/22, Н02K 21/12, опубликовано 27.07.2006).

Недостатком известного синхронного генератора с возбуждением от постоянных магнитов является необходимость использования группы модулей, что приводит к усложнению конструкции, увеличению массы и габаритов генератора. Это в свою очередь приводит к снижению эксплуатационных характеристики генератора.

Кроме того, также как и в упомянутых аналогах, в известном генераторе отсутствуют элементы, позволяющие оперативно изменять величину общего магнитного потока отдельных постоянных магнитов, образующих кольцевой магнитный вкладыш.

Задачей настоящего изобретения является упрощение конструкции и расширение функциональных возможностей синхронного генератора, за счет снабжения электроэнергией самых различных приемников переменного многофазного электрического тока с различными параметрами питающего напряжения.

Технический результат - стабилизация выходного напряжения и активной мощности, за счет введения в конструкцию синхронного генератора упругих элементов.

Технический результат достигается тем, что в синхронном генераторе с возбуждением от постоянных магнитов, содержащем несущий узел статора с подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженный размещенными на полюсных выступах электрическими катушками с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из р-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки кольцевого магнитопровода статора, согласно изобретению, кольцевой магнитный вкладыш выполнен в виде двух одинаковых колец, имеющих возможность перемещения в осевом направлении, при этом между кольцами расположен упругий элемент.

При изменении нагрузки на генераторе ток, протекающий по якорной обмотке статора, изменяется, при этом изменяется сила притяжения, действующая на магнитные вкладыши. Последние в той ли иной степени втягиваются в воздушный зазор, сжимая упругий элемент, увеличивая или уменьшая тем самым общий магнитный поток. И за счет этого стабилизируется напряжение и активная мощность на зажимах обмотки статора генератора.

Упругий элемент может быть цельным, в виде волнообразной упругой шайбы или составным, в виде отдельных пружин.

Приведенный в качестве примера упругий элемент выполнен в виде пружин.

Сущность изобретения поясняется чертежом.

На фиг. 1 изображен общий вид предложенного синхронного генератора с возбуждением от постоянных магнитов в продольном разрезе, с магнитными вкладышами в нерабочем положении.

На фиг. 2 представлен вид, когда магнитные вкладыши находятся в рабочем положении.

На обеих фигурах упругий элемент выполнен в виде пружин.

Синхронный генератор с возбуждением от постоянных магнитов содержит внутренний корпус 1 статора, на котором смонтирован кольцевой магнитопровод 2 (например, в виде монолитного диска из порошкового композиционного магнитотвердого материала) с полюсными выступами по периферии, снабженный размещенными на них электрическими катушками (секциями) 3, с многофазными (например, трехфазными, а в общем случае n-фазными) якорными обмотками статора. На валу 4 с возможностью вращения на подшипниках 5, 6 вокруг несущего узла статора, установлен кольцевой ротор 7, со смонтированными на внутренней боковой стенке кольцевыми магнитными вкладышами 8 (например, в виде монолитных магнитных колец из порошкового магнитоанизотропного материала) с чередующимися в окружном направлении магнитными полюсами из р-пар, и выполненные в виде одинаковых по конструкции колец с возможностью перемещения в пазах 9 в направлении оси вращения, и исключающих их поворот относительно кольцевого ротора 7, разделенный упругим элементом 10, например пружинами сжатия. И охватывающие полюсные выступы с якорной обмоткой кольцевого магнитопровода статора. Кольцевой ротор 7 включает в себя кольцевые магнитные вкладыши 8, упругий элемент 10 и упорное кольцо 11. Статор включает в себя кольцевой магнитопровод 2, катушки якорной обмотки 3, внутренний корпус 1 и внешний корпус 12 с центральными отверстиями 13 в торце. Внутренний корпус 1 несущего узла статора сопряжен своей внутренней цилиндрической боковой стенкой с подшипником 5, а внешний корпус 12 с подшипником 6. Кольцевой ротор 7 соединен с валом 4. Кольцевой магнитопровод 2 (с обмотками 3) статора установлен на указанный внутренний корпус 1, который жестко закреплен с внешним корпусом 12, и образуют совместно с последним кольцевую полость 14. Вентилятор 15 для охлаждения якорных обмоток статора расположен на конце вала 4. На внешний корпус установлен кожух 16. Фазы (А, В, С) якорной обмотки 3 на кольцевом магнитопроводе 2 статора соединены между собой в электрическую схему.

Синхронный генератор с возбуждением от постоянных магнитов работает следующим образом.

От привода, например от двигателя внутреннего сгорания, через шкив клиноременной передачи (на чертеже не показан), вращательное движение передается к валу 4 с кольцевым ротором 7. При вращении кольцевого ротора 7 с кольцевыми магнитными вкладышами 8 создается вращающийся магнитный поток, пронизывающий воздушный кольцевой зазор между кольцевыми магнитными вкладышами 8 и кольцевым магнитопроводом 2 статора, а также пронизывающие радиальные полюсные выступы (на чертеже не показаны) кольцевого магнитопровода 2 статора. При вращении кольцевого ротора 7 осуществляется также попеременное прохождение "северных" и "южных" чередующихся магнитных полюсов кольцевых магнитных вкладышей 8 над радиальными полюсными выступами кольцевого магнитопровода 2 статора, вызывающее вращение магнитного потока как по величине, так и по направлению в радиальных полюсных выступах кольцевого магнитопровода 2. При этом в якорной обмотке 3 статора наводятся синусоидальная электродвижущая сила (ЭДС) со сдвигом по фазе между собой на угол 120 градусов и с частотой, равной произведению числа пар (р) магнитных полюсов в кольцевом магнитном вкладыше 8 на частоту вращения кольцевого ротора 7. Переменный ток (например, трехфазный), протекающий по якорной обмотке статора 3, подается на выходные электрические силовые разъемы (на чертеже не показаны) для подключения приемников электрической энергии переменного тока.

При увеличении нагрузки на генератор ток, протекающий по якорной обмотке статора 3, увеличивается, при этом увеличивается также сила притяжения, действующая на кольцевые магнитные вкладыши 8. Последние втягиваются в воздушный зазор, сжимая упругий элемент 10, усиливая магнитный поток кольцевых магнитных вкладышей 8. За счет этого стабилизируется напряжение на зажимах обмотки 3 статора генератора. Выполнение статора с указанными кольцевым магнитопроводом 2 и кольцевым ротором 7, смонтированным на одном валу 4, а также кольцевого ротора с возможностью втягивания кольцевых магнитных вкладышей 8 в воздушный зазор, позволяют стабилизировать выходное напряжение и активную мощность синхронного генератора в заданных пределах.

Таким образом, предлагаемое техническое решение позволяет обеспечить стабилизацию как выходного напряжения, так и активной мощности при изменении электрической нагрузки генератора.

Предложенный синхронный генератор с возбуждением от постоянных магнитов может быть использован при соответствующей коммутации якорных обмоток статора для снабжения электроэнергией самых различных приемников переменного многофазного электрического тока с различными параметрами питающего напряжения.

Синхронный генератор с возбуждением от постоянных магнитов, содержащий несущий узел статора с опорными подшипниками, на котором смонтирован кольцевой магнитопровод с полюсными выступами по периферии, снабженный размещенными на полюсных выступах электрическими катушками, с многофазной якорной обмоткой статора, установленный на опорном валу с возможностью вращения в опорных подшипниках вокруг кольцевого магнитопровода статора кольцевой ротор со смонтированным на внутренней боковой стенке кольцевым магнитным вкладышем с чередующимися в окружном направлении магнитными полюсами из р-пар, охватывающим полюсные выступы с электрическими катушками якорной обмотки кольцевого магнитопровода статора, отличающийся тем, что магнитный вкладыш выполнен в виде двух одинаковых колец, имеющих возможность перемещения в осевом направлении, при этом между кольцами расположен упругий элемент.

Похожие патенты:

Данное изобретение относится к электрической машине (1) для гибридных или электрических транспортных средств. Машина содержит внешний ротор, статор (2), расположенный внутри ротора (3), ротор содержит несущий элемент (4) ротора, роторные пластины (5) и постоянные магниты (6), несущий элемент (4) ротора содержит первую, радиально проходящую часть (7) несущего элемента и вторую, проходящую в осевом направлении часть (8) несущего элемента, которая соединена с ним, вторая часть (8) несущего элемента несет роторные пластины (5) и постоянные магниты (6), а статор (2) имеет статорные пластины (9) и обмотки (10), обмотки образуют головки обмоток (11, 12), которые проходят в осевом направлении с обеих сторон над статорными пластинами (9), также имеет колесо (14) крыльчатки, которое соединено с несущим элементом (4) ротора.

Бесконтактные синхронные генераторы с постоянными магнитами (СГПМ) имеют простую электрическую схему, не потребляют энергии на возбуждение и имеют повышенный КПД, отличаются высокой надежностью работы, менее чувствительны к действию реакции якоря, чем обычные машины, их недостатки связаны с невысокими регулирующими свойствами через то, что рабочий поток постоянных магнитов нельзя изменять в широких пределах. Однако во многих случаях эта особенность не является определяющей и не препятствует широкому их применению.

Большинство СГПМ, применяемых в настоящее время, имеют магнитную систему с постоянными магнитами, которые вращаются. Поэтому магнитные системы отличаются друг от друга в основном конструкцией ротора (индуктора). Статор же СГПМ имеет практически такую ​​же конструкцию, что и в классических машинах переменного тока, обычно он содержит набранный из листов электротехнической стали цилиндрический магнитопровод, на внутренней поверхности которого расположены пазы для размещения обмотки якоря. В отличие от обычных синхронных машин рабочий промежуток между статором и ротором в СГПМ выбирают минимальным, исходя из технологических возможностей. Конструкция ротора в значительной степени определяется магнитными и технологическими свойствами магнитотвердые материала.

Ротор с цилиндрическим магнитом

Наиболее простым является ротор с монолитным цилиндрическим магнитом кольцеобразного типа (рис. 5.9, а). Магнит 1 выполнен литым, крепится на валу с помощью втулки 2, например, из сплава алюминия. Намагничивания магнита осуществляется в радиальном направлении на многополюсной установке намагничивающей. Поскольку механическая прочность магнитов небольшая, то при высоких линейных скоростях магнит помещают в оболочку (бандаж) из немагнитного материала.

Разновидностью ротора с цилиндрическим магнитом является сборный ротор из отдельных сегментов 1 из немагнитной стальной оболочкой 3 (рис. 5.9, б). Намагниченные радиально сегментные магниты 1 заключены на втулку 2 с магнитомьякиои стали и любым способом, например, с помощью клея, закреплены. Генераторы с ротором такой конструкции при стабилизации магнита в свободном состоянии имеют форму кривой ЭДС, близкую к синусоидальной. Преимуществом роторов с цилиндрическим магнитом является простота и технологичность конструкции. Недостатком - низкое использование объема магнита вследствие небольшой длины средней силовой линии полюса h и. С увеличением числа полюсов значение h и уменьшается и использования объема магнита ухудшается.

Рисунок 5.9 - Роторы с цилиндрическим магнитом: а - монолитный, б - сборный

Роторы с звездообразным магнитом

В СГПМ мощностью до 5 кВА широкое распространение получили роторы звездообразного типа с явно выраженная полюсами без полюсных башмаков (рис. 5.10, а). В такой конструкции магнит-звездочку чаще крепят на валу с помощью заливки немагнитным сплавом 2. Магнит может также видпиватися непосредственно на валу. Для снижения размагничивающей действия поля реакции якоря при ударном токе короткого замыкания на роторе в ряде случаев предполагается демпферная система 3. Последняя осуществляется, как правило, путем заливки ротора алюминием. При больших частотах вращения на магнит напрессовывается немагнитный бандаж.

Однако, при перегрузках генератора поперечная реакция якоря может вызвать несимметричное перемагничивания краев полюсов. Подобное перемагничивания искажает форму поля в рабочем промежутке и форму кривой ЭДС.

Одним из способов уменьшения действия поля якоря на поле магнита применение полюсных башмаков с Магнитомягкие стали. Изменяя ширину полюсных башмаков (регулируя поток рассеяния полюсов), можно добиться оптимального использования магнита. Кроме того, изменяя конфигурацию полюсных башмаков, можно получить необходимую форму поля в рабочем промежутке генератора.

На рис. 5.10, б приведена конструкция сборного ротора звездообразного типа с призматическими постоянными магнитами с полюсными башмаками. Радиально намагниченные магниты 1 установлены на втулке 2 с Магнитомягкие материала. На полюсе магнитов наложенные полюсные башмаки 3 с магнитной стали. Для обеспечения механической прочности ба

Рисунок 5.10 - Роторы звездообразного типа: а - без полюсных башмаков; б - сборный с полюсными башмаками

шмакы приварены к немагнитных вставок 4, образующей бандаж. Промежутки между магнитами могут заполняться алюминиевым сплавом или компаундом.

К недостаткам роторов звездообразного типа с полюсными башмаками следует отнести усложнение конструкции и уменьшение заполнения магнитами объема ротора.

Роторы с когтеобразные полюсами.

В генераторах с большим числом полюсов широко используется конструкция ротора с когтеобразные полюсами. Ногтеобразный ротор (рис. 5.11) содержит цилиндрический магнит 1, намагниченный в аксиальном направлении, размещенный на немагнитных втулке 2. К торцам магнита примыкают фланцы 3 и 4 с Магнитомягкие стали, имеют когтеобразные выступления, которые образуют полюса. Все выступления левого фланца является северными полюсами, а выступления правого фланца - южными. Выступления фланцев чередуются по окружности ротора, образуя многополюсную систему возбуждения. Мощность генератора можно значительно повысить, если применить модульный принцип, расположив на валу несколько магнитов с когтеобразные полюсами.

Недостатками роторов когтеобразные типа являются: относительная сложность конструкции, трудность намагничивания магнита в собранном роторе, большие потоки рассеяния, возможен отгиб концов выступлений при высоких частотах вращения, имела мера заполнения магнитом объема ротора.

Существуют конструкции роторов с различными комбинациями ПМ: с последовательным и параллельным включением МРС магнитов, с регулированием напряжения за счет осевого перемещения ротора относительно статора, системы совместного регулирования возбуждения СГПМ от ПМ и параллельно работающей электромагнитной обмоткой и др. Для безредукторных витроелектриних установок лучшим решением является применение СГПМ много-

Рисунок 5.11 - Ротор когтеобразные типа

полюсного исполнения. Есть опыт в Германии, Украине в других странах по разработке и применению тихоходных генераторов для безредукторных ВЭУ с частотой вращения 125-375 об / мин.

Из-за главного требования для безредукторной ВЭУ - иметь низкую частоту вращения генератора - габариты и масса СГПМ получаются завышенными по сравнению с высокооборотными генераторами с примерно одинаковой мощности. В корпусе 1 (рис. 5.12) расположен обычный статор 2 с обмоткой 3. Ротор (индуктор) 4 с наклеенными на внешней поверхности пластинками 5 из неодим-железо-бора установлен на валу 6 с подшипниками 7. Корпус 1 закреплен на основе 8, эт "связано с опорой ВЭУ, а ротор 4 соединен с валом ветротурбин (на рис. 5.12 не показаны).

При низких скоростях ветра для ВЭУ необходимо использовать генераторы с низкими скоростями вращения. В этом случае система часто не имеет редуктора и ось непосредственно соединена с осью электрического генератора. При этом возникает проблема получения достаточно высокой выходного напряжения и электрической мощности. Один из способов ее решения - многополюсный электрогенератор с ротором достаточно большого диаметра. Ротор электрогенератора при этом может быть выполнен с использованием постоянных магнитов. Электрогенератор с ротором на постоянных магнитах не имеет коллектора и щеток, ко-

Рисунок 5.12 - Конструктивная схема СГПМ для безредукторной ВЭУ: 1- корпус; 2 - статор; 3 - обмотка; 4 - ротор; 5 - пластинки постоянных магнитов с Nd-Fe-B; 6 - вал; 7 - подшипники; 8 - основа

ляет существенно повысить его надежность и время работы без обслуживания и ремонта.

Электрогенератор с ротором на постоянных магнитах может быть построен по разным схемам, отличающиеся друг от друга общим расположением обмоток и магнитов. Магниты с полярностью, что чередуется, располагаются на роторе генератора. Обмотки с направлением намотки, что чередуется, располагаются на статоре генератора. Если ротор и статор представляют из себя соосные диски, то такой тип генератора называют аксиальным или дисковым (рис. 5.13).

Если ротор и статор представляют из себя коаксиальные соосные цилиндры, то такой тип генератора называют радиальным или цилиндрическим (рис. 5.14). В генераторе радиального типа ротор может быть внутренним или внешним по отношению к статора.

Рисунок 5.13 - Упрощенная схема электрогенератора с ротором на постоянных магнитах аксиального (дискового) типа

Рисунок 5.14 - Упрощенная схема электрогенератора с ротором на постоянных магнитах радиального (цилиндрического) типа

Важная особенность синхронных генераторов с ПМ по сравнению с обычными синхронными генераторами - сложность регулирования выходного напряжения и его стабилизации. Если в обычных синхронных машинах можно плавно регулировать рабочий поток и напряжение, меняя ток возбуждения, то в машинах с постоянными магнитами такая возможность отсутствует, поскольку поток Ф находится в пределах заданной линии возврата и меняется незначительно. Для регулирования и стабилизации напряжения синхронных генераторов с постоянными магнитами приходится использовать специальные методы.

Один из возможных путей стабилизации напряжения синхронных генераторов - введение во внешнюю электрическую цепь генератора емкостных элементов, способствующих появлению продольно-намагничивая реакции якоря. Внешние характеристики генератора при емкостном характере нагрузки слабо меняются и даже могут содержать нарастающие участка. Конденсаторы, обеспечивающие емкостной характер нагрузки, включаются последовательно в цепь нагрузки непосредственно (рис. 5.15, а) или через пидвишучий трансформатор, который позволяет уменьшить массу конденсаторов за счет увеличения их рабочего напряжения и уменьшения тока (рис. S.1S, б). Возможно также параллельное включение конденсатора в круг генератора (рис. 5.15, е).

Рисунок 5.15 - включение стабилизирующих конденсаторов в круг синхронного генератора с постоянными магнитами

Хорошую стабилизацию выходного напряжения генератора с ПМ можно обеспечить с помощью резонансного контура, содержащего емкость С и дроссель насыщения L. Контур включается параллельно нагрузке, как показано на рис. 5.16, а в однофазном изображении. За счет насыщения дросселя его индуктивность падает с ростом тока и зависимость напряжения на дросселе от тока дросселя имеет нелинейный характер (рис. 5.16, б). В то же время зависимость напряжения на емкости от тока - линейная. В точке пересечения кривых и , что соответствует номинальному напряжению генера-

Рисунок 5.16 - стабилизация напряжения, синхронного генератора с постоянными магнитами с помощью резонансного контура: а - схема подключения контура; б - вольт-амперные характеристики (б)

тора , в контуре наступает резонанс токов, то есть и реактивный ток в контур извне не поступает.

Если напряжение снизится, то, как видно из рис. 4.15, б, при имеем , то есть контур забирает от генератора емкостный ток. Продольно-намагничивая реакция якоря, возникающая при этом, способствует росту U . Если же , то и контур забирает от генератора индуктивный ток. Продольно-размагничивающей реакция якоря приводит к снижению U.

В некоторых случаях для стабилизации напряжения генераторов используются дроссели насыщения (ДН), что пидмагничуються постоянным током от системы регулирования напряжения. При снижении напряжения регулятор увеличивает пидмагничуючий ток в дросселе, его индуктивность снижается из-за насыщения сердечника, уменьшается действие продольно- размагничивающей реакции якоря, а также падение напряжения на ДН, что способствует восстановлению выходного напряжения генератора.

Регулирования и стабилизации напряжения генераторов с ПМ можно эффективно осуществлять с помощью полупроводникового преобразователя, в каждой фазе которого есть два встречно-параллельно включенных тиристора. Каждая полуволна кривой напряжения перед преобразователем соответствует прямом напряжении на одном из тиристоров. Если система управления подает сигналы на включение тиристоров с некоторым запаздыванием, что соответствует углу управления . С ростом напряжения за преобразователем уменьшается, при снижении напряжения на зажимах генератора угол уменьшается так, чтобы напряжение по генератором . С помощью подобного преобразователя можно не только стабилизировать, но и регулировать выходное напряжение в широких пределах, изменяя угол . Недостаток описанной схемы - ухудшение качества напряжения при увеличении за счет появления высших гармоник.

Описанные способы регулирования и стабилизации напряжения связанные с применением в отношении тяжелых и громоздких внешних по отношению к генератору дополнительных устройств. Можно обеспечить достижение поставленной цели путем использования в генераторе дополнительной пидмагничуваючои обмотки (ПО) постоянного тока, меняет мере насыщения стальных магнито проводов и меняет, таким образом, внешнюю магнитную проводимость по отношению к магниту.

В синхронных машинах этого типа постоянно направленное поле возбуждения образуется с помощью постоянных магнитов. Синхронные машины с постоянными магнитами не нуждаются в возбудителе и благодаря отсутствию потерь на возбуждение и в скользящем контакте обладают высоким КПД, их надежность существенно выше, чем у обычных синхронных машин, в которых вращающаяся обмотка возбуждения и щеточное устройство достаточно часто повреждаются; кроме того, они практически не нуждаются в обслуживании в течение всего срока службы.
Постоянные магниты могут заменять обмотку возбуждения как в многофазных синхронных машинах обычного исполнения, так и во всех специальных исполнениях, которые были описаны выше (однофазных синхронных машинах, синхронных машинах с клюво- образными полюсами и в индукторных машинах).
Синхронные машины с постоянными магнитами отличаются от своих аналогов с электромагнитным возбуждением конструкцией индукторных магнитных систем. Аналогом ротора обычной неявнопо- люсной синхронной машины является цилиндрический кольцеобразный магнит, намагничиваемый в радиальном направлении (рис., 6).

Индукторные магнитные системы с цилиндрическим и звездообразным магнитами;
а - звездообразный магнит без полюсных башмаков; б - четырехполюсный цилиндрический магнит


Рис. 2. Ротор с когтеобразными полюсами, возбуждаемый постоянным магнитом:
1 - кольцевой постоянный магнит; 2 - диск с системой южных полюсов; 3 - диск с системой северных полюсов

Явнополюсному ротору обычной машины с электромагнитным возбуждением аналогичен ротор со звездообразным магнитом по рис. 1, а, в котором магнит 1 крепится на валу 3 заливкой из алюминиевого сплава 2.

В роторе с когтеобразиыми полюсами (рис. 2) кольцевой магнит, намагниченный в осевом направлении, заменяет кольцевую обмотку возбуждения. В разноименнополюсной индукторной машине по рис. электромагнитное возбуждение может быть заменено магнитным, как показано на рис. 3 (вместо трех малых зубцов в каждой из зон I-IV здесь имеется по одному зубцу в каждой из зон). Соответствующий аналог с магнитным возбуждением имеется и у одноименнополюсной машины. Постоянный магнит может быть в этом случае выполнен в виде намагниченного в осевом направлении кольца, которое вставлено между станиной и подшипниковым щитом.

Рис. 3. Индукторный разноименнополюсной генератор с магнитоэлектрическим возбуждением:
ОЯ - обмотка якоря; ПМ - постоянный магнит
Для описания электромагнитных процессов в синхронных машинах с постоянными магнитами вполне пригодна теория синхронных машин с электромагнитным возбуждением, основы которой изложены в предыдущих главах раздела. Однако для того, чтобы воспользоваться этой теорией и применить ее для расчета характеристик синхронной машины с постоянными магнитами в генераторном или двигательном режиме, нужно предварительно определить по кривой размагничивания постоянного магнита ЭДС холостого хода Е, или коэффициент возбужденности г = Ef / U и рассчитать индуктивные сопротивления Xad и X с учетом влияния магнитного сопротивления магнита, которое может быть настолько существенным, что Ха(1 < Xaq.
Машины с постоянными магнитами были изобретены еще на заре развития электромеханики. Однако широкое применение они получили в течение последних десятилетий в связи с разработкой новых материалов для постоянных магнитов с большой удельной магнитном энергией (например, типа магнико или сплавов на основе самария и кобальта). Синхронные машины с такими магнитами по своим массо- габаритным показателям и эксплуатационным характеристикам в определенном диапазоне мощностей и частот вращения вполне могут конкурировать с синхронными машинами, имеющими электромагнитное возбуждение.

Мощность быстроходных синхронных генераторов с постоянными магнитами для питания бортовой сети самолетов достигает десятков киловатт. Генераторы и двигатели с постоянными магнитами небольшой мощности применяются в самолетах, автомобилях, тракторах, где их высокая надежность имеет первостепенное значение. В качестве двигателей малой мощности они широко применяются и во многих других областях техники. По сравнению с реактивными двигателями они обладают более высокой стабильностью частоты вращения, лучшими энергетическими показателями, уступая им по стоимости и пусковым свойствам.
По способам пуска в ход синхронные двигатели малой мощности с постоянными магнитами делятся на самозапускающиеся двигатели и двигатели с асинхронным пуском.
Самозапускающиеся двигатели малой мощности с постоянными магнитами применяются для приведения в движение механизмов часов и различных реле, разнообразных программных устройств и т.п. Номинальная мощность этих двигателей не превышает нескольких ватт (обычно составляет доли ватта). Для облегчения пуска двигатели выполняют многополюсными (р > 8) и получают питание от однофазной сети промышленной частоты.
В нашей стране такие двигатели выпускаются в серии ДСМ, в которой для создания многополюсного поля применены клювообразное исполнение магнитопровода статора и однофазная якорная обмотка.
Запуск этих двигателей в ход осуществляется за счет синхронного момента от взаимодействия пульсирующего поля с постоянными магнитами ротора. Для того чтобы пуск произошел успешно и в нужную сторону, применяют специальные механические устройства, которые позволяют ротору вращаться только в одном направлении и отсоединяют его от вала во время синхронизации
Синхронные двигатели малой мощности с постоянными магнитами с асинхронным пуском выпускаются с радиальным расположением постоянного магнита и пусковой короткозамкнутой обмотки и с аксиальным расположением постоянного магнита и пусковой короткозамкнутой обмотки. По устройству статора эти двигатели ничем не отличаются от машин с электромагнитным возбуждением. Обмотка статора в обоих случаях выполняется двух- или трехфазной. Различаются они лишь по конструкции ротора.
В двигателе с радиальным расположением магнита и коротко- замкнутой обмоткой последняя размещается в пазах шихтованных полюсных наконечников постоянных магнитов Для получения приемлемых потоков рассеяния между наконечниками соседних полюсов имеются немагнитные промежутки. Иногда в целях увеличения механической прочности ротора наконечники объединяются с помощью насыщающихся перемычек в целый кольцевой сердечник.
В двигателе с аксиальным расположением магнита и коротко- замкнутой обмоткой часть активной длины занята постоянным магнитом, а на другой ее части рядом с магнитом размешается шихтованный магнитопровод с короткозамкнутой обмоткой, причем и постоянный магнит, и шихтованный магнитопровод укреплены на общем валу. В связи с тем что во время пуска двигатели с постоянными магнитами остаются возбужденными, их пуск протекает менее благоприятно, чем в обычных синхронных двигателях, возбуждение которых отключается. Объясняется это тем, что при пуске наряду с положительным асинхронным моментом от взаимодействия вращающегося поля с токами, индуктированными в короткозамкнутой обмотке, на ротор действует отрицательный асинхронный момент от взаимодействия постоянных магнитов с токами, индуктированными полем постоянных магнитов в обмотке статора.

Возбуждение синхронной машины и её магнитные поля. Возбуждение синхронного генератора.

Обмотка возбуждения синхронного генератора (С.Г.) располагается на роторе и получает питание постоянным током от постороннего источника. Она создает основное магнитное поле машины, которое вращается вместе с ротором и замыкается по всему магнитопроводу. В процессе вращения это поле пересекает проводники обмотки статора и индуктирует в них ЭДС Е10.
Для питания обмотки возбуждения мощных С.Г. используются специальные генераторы – возбудители. Если они установлены отдельно, то питание в обмотку возбуждения подается через контактные кольца и щеточный аппарат. Для мощных турбогенераторов возбудители (синхронные генераторы «обращенного типа») навешивают на вал генератора и тогда обмотка возбуждения, получает питание через полупроводниковые выпрями-тели, установленные на валу.
Мощность, затрачиваемая на возбуждение, составляет примерно 0,2 - 5% от номинальной мощности С.Г., причем меньшая величина – для крупных С.Г.
В генераторах средней мощности часто используют систему самовозбуждения – от сети обмотки статора через трансформаторы, полупроводниковые выпрямители и кольца. В очень малых С.Г. иногда используют постоянные магниты, но это не позволяет регулировать величину магнитного потока.

Обмотка возбуждения может быть сосредоточенной (у явнопо-люсных синхронных генераторов) или распределенной (у неявнополюсных С.Г.).

Магнитная цепь С.Г.

Магнитная система С.Г. – это разветвленная магнитная цепь, имеющая 2р параллельных ветвей. При этом магнитный поток, созданный обмоткой возбуждения, замыкается по таким участкам магнитной цепи: воздушный зазор «?» – два раза; зубцовая зона статора hZ1 – два раза; спинка статора L1; зубцовый слой ротора «hZ2» - два раза; спинка ротора – «LОБ». В явнополюсных генераторах на роторе есть полюса ротора «hm» - два раза (вместо зубцового слоя) и крестовина LОБ (вместо спинки ротора).

На рисунке 1 видно, что параллельные ветви магнитной цепи симметричны. Видно также, что основная часть магнитного потока Ф замыкается по всему магнитопроводу и сцеплена как с обмоткой ротора, так и с обмоткой статора. Меньшая часть магнитного потока Фсигма(извените нету символа) замыкается только вокруг обмотки возбуждения, а затем по воздушному зазору не сцепляясь с обмоткой статора. Это магнитный поток рассеяния ротора.

Рисунок 1. Магнитные цепи С.Г.
явнополюсного (а) и неявнополюсного (б) типа.

В этом случае полный магнитный поток Фm равен:

где СИГМАm – коэффициент рассеяния магнитного потока.
МДС обмотки возбуждения на пару полюсов в режиме холостого хода можно определить как сумму составляющих МДС, необходимых на преодоление магнитных сопротивлений в соответствующих участках цепи.

Наибольшим магнитным сопротивлением обладает участок воз-душного зазора, у которого магнитная проницательность µ0 = const постоянна. В представленной формуле wВ – это число последовательно соединенных витков обмотки возбуждения на пару полюсов, а IВО – ток возбуждения в режиме холостого хода.

Сталь магнитопровода с увеличением магнитного потока имеет свойство насыщения, поэтому магнитная характеристика синхронного генератора нелинейна. Эту характеристику как зависимость магнитного потока от тока возбуждения Ф = f(IВ) или Ф = f(FВ) можно построить путем расчета или снять опытным путем. Она имеет вид, показанный на рисунке 2.

Рисунок 2. Магнитная характеристика С.Г.

Обычно С.Г. проектируют так, чтобы при номинальном значении магнитного потока Ф магнитная цепь была насыщена. При этом участок «ав» магнитной характеристики соответствует МДС на преодолении воздушного зазора 2Fсигма, а участок «вс» – на преодоление магнитного сопротивления стали магнитопровода. Тогда отношение можно назвать коэффициентом насыщения магнитопровода в целом.

Холостой ход синхронного генератора

Если цепь обмотки статора разомкнута, то в С.Г. существует только одно магнитное поле - созданное МДС обмотки возбуждения.
Синусоидальное распределение индукции магнитного поля, необходимое для получения синусоидальной ЭДС обмотки статора, обеспечивается:
- в явнополюсных С.Г. формой полюсных наконечников ротора (под серединой полюса зазор меньше, чем под его краями)и скосом пазов статора.
- в неявнополюсных С.Г. – распределением обмотки возбужде-ния по пазам ротора под серединой полюса зазор меньше, чем под его краями и скосом пазов статора.
В многополюсных машинах применяют обмотки статора с дроб-ным числом пазов на полюс и фазу.

Рисунок 3. Обеспечение синусоидальности магнитного
поля возбуждения

Поскольку ЭДС обмотки статора Е10 пропорциональна магнитному потоку Фо, а ток в обмотки возбуждения IВО пропорционален МДС обмотки возбуждения FВО, нетрудно построить зависимость: Е0 = f(IВО) идентичную магнитной характеристике: Ф = f(FВО). Эту зависимость называют характеристикой холостого хода (Х.Х.Х.) С.Г. Она позволяет определять параметры С.Г., строить его векторные диаграммы.
Обычно Х.Х.Х. строят в относительных единицах е0 и iВО, т.е. те-кущее значение величин относят к их номинальным значениям

В этом случае Х.Х.Х. называют нормальной характеристикой. Интересно то, что нормальные Х.Х.Х. практически для всех С.Г. одинаковы. В реальных условиях Х.Х.Х. начинается не из начала координат, а из некоторой точки на оси ординат, которая соответствует остаточной ЭДС е ОСТ., обусловленной остаточным магнитным потоком стали магнитопровода.

Рисунок 4. Характеристика холостого хода в относительных единицах

Принципиальные схемы возбуждения С.Г. с возбуждением а) и с самовозбуждением б) показаны на рисунке 4.

Рисунок 5. Принципиальные схемы возбуждения С.Г.

Магнитное поле С.Г. при нагрузке.

Чтобы нагрузить С.Г. или увеличить его нагрузку, надо уменьшить электрическое сопротивление между зажимами фаз обмотки статора. Тогда по замкнутым цепям фазных обмоток под действием ЭДС обмотки статора потекут токи. Если считать, что эта нагрузка симметрична, то токи фаз создают МДС трехфазной обмотки, которая имеет амплитуду

и вращается по статору с частотой вращения n1, равной частоте вращения ротора. Это значит, что МДС обмотки статора F3Ф и МДС обмотки возбуждения FВ, неподвижная относительно ротора, вращаются с одинаковыми скоростями, т.е. синхронно. Иначе говоря, они неподвижны относительно друг друга и могут взаимодейст-вовать.
В то же время в зависимости от характера нагрузки эти МДС могут быть по-разному ориентированы относительно друг друга, что изменяет характер их взаимодействия и, следовательно, рабочие свойства генератора.
Отметим еще раз, что воздействие МДС обмотки статора F3Ф = Fa на МДС обмотки ротора FВ называется «реакция якоря».
В неявнополюсных генераторах воздушный зазор между ротором и статором является равномерным, поэтому индукция В1, созданная МДС обмотки статора, распределена в пространстве как и МДС F3Ф = Fa синусоидально независимо от положения ротора и обмотки возбуждения.
В явнополюсных генераторах воздушный зазор неравномерен как за счет формы полюсных наконечников, так и за счет междуполюсного пространства, заполненного медью обмотки возбуждения и изоляционными материалами. Поэтому магнитное сопротивление воздушного зазора под полюсными наконечниками значительно меньше, чем в области междуполюсного пространства. Ось полюсов ротора С.Г. называют его продольной осью d - d, а ось междуполюсного пространства – поперечной осью С.Г. q - q.
Это значит, что индукция магнитного поля статора и график её распределения в пространстве зависят от положения волны МДС F3Ф обмотки статора относительно ротора.
Допустим, что амплитуда МДС обмотки статора F3Ф = Fa совпадает с продольной осью машины d - d, а пространственное распределение этой МДС синусоидально. Положим также, что ток возбуждение равен нулю Iво = 0.
Для наглядности изобразим на рисунке линейную развертку этой МДС, из которой видно, что индукция магнитного поля статора в области полюсного наконечника достаточно велика, а в области междуполюсного пространства резко снижается практически до нуля из - за большого сопротивления воздуха.


Рисунок 6. Линейная развертка МДС обмотки статора по продольной оси.

Такое неравномерное распределение индукции с амплитудой В1dmax можно заменить синусоидальным распределением, но с меньшей амплитудой В1d1max.
Если максимальное значение МДС статора F3Ф = Fa совпадает с поперечной осью машины, то картина магнитного поля будет иной, что видно из рисунка линейной развертки МДС машины.

Рисунок 7. Линейная развертка МДС обмотки статора по поперечной оси.

Здесь также величина индукции в районе полюсных наконечни-ков больше, чем в области междуполюсного пространства. И вполне очевидно, что амплитуда основной гармоники индукции поля статора В1d1 по продольной оси больше амплитуды индукции поля В1q1, по поперечной оси. Степень уменьшения индукции В1d1 и В1q1, которое обусловлено неравномерностью воздушного зазора учитывают с помощью коэффициентов:


Они зависят от многих факторов и, в частности, от отношения сигма/тау(извените нету символа) (относительная величина воздушного зазора), от отношения

(коэффициент полюсного перекрытия), где вп – ширина полюсного наконечника, и от других факторов.

Настоящее изобретение относится к области электротехники, а именно к бесколлекторным электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания. Технический результат - создание компактного высокоэффективного электрического генератора, который позволяет при сохранении относительно простой и надежной конструкции широко варьировать выходные параметры электрического тока в зависимости от условий эксплуатации. Сущность изобретения состоит в том, что бесколлекторный синхронный генератор с постоянными магнитами состоит из одной или нескольких секций, каждая из которых включает ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов, статор, несущий четное число подковообразных электромагнитов, расположенных попарно напротив друг друга и имеющих по две катушки с последовательно встречным направлением обмотки, устройство для выпрямления электрического тока. Постоянные магниты закреплены на магнитопроводе таким образом, что образуют два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью. Электромагниты сориентированы поперек названных рядов полюсов так, что каждая из катушек электромагнита расположена над одним из параллельных рядов полюсов ротора. Количество полюсов в одном ряду, равное n, удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. Количество электромагнитов в генераторе обычно не превышает число (n-2). 12 з.п. ф-лы, 9 ил.

Рисунки к патенту РФ 2303849

Настоящее изобретение относится к бесколлекторным электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания.

Синхронные машины переменного тока получили самое широкое распространение как в сфере производства, так и в сфере потребления электрической энергии. Все синхронные машины обладают свойством обратимости, то есть каждая из них может работать как в режиме генератора, так и в режиме двигателя.

Синхронный генератор содержит статор, обычно это полый шихтованный цилиндр с продольными пазами на внутренней поверхности, в которых расположена обмотка статора, и ротор, представляющий собой постоянные магниты чередующейся полярности, расположенные на валу, который может приводиться в движение тем или иным способом. В промышленных генераторах большой мощности для получения возбуждающего магнитного поля применяют обмотку возбуждения, расположенную на роторе. В синхронных генераторах относительно небольшой мощности применяют постоянные магниты, расположенные на роторе.

При неизменной частоте вращения форма кривой ЭДС, вырабатываемой генератором, определяется только законом распределения магнитной индукции в зазоре между ротором и статором. Поэтому для получения напряжения на выходе генератора определенной формы и для эффективного преобразования механической энергии в электрическую используют различную геометрию ротора и статора, а также подбирают оптимальное количество постоянных магнитных полюсов и число витков обмотки статора (US 5117142, US 5537025, DE 19802784, ЕР 0926806, WO 02/003527, US 2002153793, US 2004021390, US 2004212273, US 2004155537). Перечисленные параметры не являются универсальными, а выбираются в зависимости от условий эксплуатации, что зачастую ведет к ухудшению других характеристик электрогенератора. Кроме того, сложная форма ротора или статора усложняет изготовление и сборку генератора и, как следствие, увеличивает себестоимость изделия. Ротор синхронного магнитоэлектрического генератора может иметь различную форму, например, при малой мощности ротор обычно выполняют в виде «звездочки», при средней мощности - с когтеобразными полюсами и цилиндрическими постоянными магнитами. Ротор с когтеобразными полюсами дает возможность получить генератор с рассеянием полюсов, ограничивающим ударный ток при внезапном коротком замыкании генератора.

В генераторе с постоянными магнитами затруднена стабилизация напряжения при изменении нагрузки (поскольку отсутствует обратная магнитная связь, как, например, в генераторах с обмоткой возбуждения). Для стабилизации выходного напряжения и выпрямления тока используют различные электрические схемы (GB 1146033).

Настоящее изобретение направлено на создание компактного высокоэффективного электрического генератора, который позволяет при сохранении относительно простой и надежной конструкции широко варьировать выходные параметры электрического тока в зависимости от условий эксплуатации.

Электрогенератор, выполненный в соответствии с настоящим изобретением, является бесколлекторным синхронным генератором с постоянными магнитами. Он состоит из одной или нескольких секций, каждая из которых включает:

Ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов,

Статор, несущий четное число подковообразных (П-образных) электромагнитов, расположенных попарно напротив друг друга и имеющих по две катушки с последовательно встречным направлением обмотки,

Устройство для выпрямления электрического тока.

Постоянные магниты закреплены на магнитопроводе таким образом, что образуют два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью. Электромагниты сориентированы поперек названных рядов полюсов так, что каждая из катушек электромагнита расположена над одним из параллельных рядов полюсов ротора. Количество полюсов в одном ряду, равное n, удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. Количество электромагнитов в генераторе обычно не превышает число n-2.

Устройство для выпрямления тока обычно представляет собой одну из стандартных выпрямительных схем, выполненных на диодах: двухполупериодную со средней точкой или мостовую, соединенную с обмотками каждого электромагнита. В случае необходимости может быть также использована иная схема выпрямления тока.

В зависимости от особенностей эксплуатации электрогенератора ротор может располагаться как с внешней стороны статора, так и внутри статора.

Электрогенератор, выполненный в соответствии с настоящим изобретением, может включать несколько идентичных секций. Количество таких секций зависит от мощности источника механической энергии (приводного двигателя) и требуемых параметров электрогенератора. Предпочтительно, чтобы секции были сдвинуты по фазе относительно друг друга. Это может достигаться, например, начальным сдвигом ротора в соседних секциях на угол , лежащий в диапазоне от 0° до 360°/n; или угловым сдвигом электромагнитов статора в соседних секциях относительно друг друга. Предпочтительно, чтобы электрогенератор также включал блок регулятора напряжений.

Сущность изобретения поясняется следующими чертежами:

на Фиг.1(а) и (б) изображена схема электрогенератора, выполненного в соответствии с настоящим изобретением, у которого ротор расположен внутри статора;

на Фиг.2 представлено изображение одной секции электрогенератора;

на Фиг.3 представлена принципиальная электрическая схема электрогенератора с двухполупериодной со средней точкой схемой выпрямления тока;

на Фиг.4 представлена принципиальная электрическая схема электрогенератора с одной из мостовых схем выпрямления тока;

на Фиг.5 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.6 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.7 представлена принципиальная электрическая схема электрогенератора с другой мостовой схемой выпрямления тока;

на Фиг.8 изображена схема электрогенератора с наружным исполнением ротора;

на Фиг.9 представлено изображение многосекционного генератора, выполненного в соответствии с настоящим изобретением.

На Фиг.1(а) и (б) представлен электрогенератор, выполненный в соответствии с настоящим изобретением, который содержит корпус 1; ротор 2 с круговым магнитопроводом 3, на котором с одинаковым шагом закреплено четное число постоянных магнитов 4; статор 5, несущий четное число подковообразных электромагнитов 6, расположенных попарно напротив друг друга, и средство для выпрямления тока (не показано).

Корпус 1 электрогенератора обычно отливают из алюминиевого сплава или чугуна либо делают сварным. Монтаж электрогенератора в месте его установки осуществляют посредством лап 7 или посредством фланца. Статор 5 имеет цилиндрическую внутреннюю поверхность, на которой с одинаковым шагом крепятся идентичные электромагниты 6. В данном случае десять. Каждый из указанных электромагнитов имеет по две катушки 8 с последовательно встречным направлением обмотки, расположенных на П-образном сердечнике 9. Пакет сердечника 9 собирается из нарубленных пластин электротехнической стали на клею или склепывается. Выводы обмоток электромагнитов через одну из выпрямительных схем (не показано) подключаются к выходу электрогенератора.

Ротор 3 отделен от статора воздушным промежутком и несет четное число постоянных магнитов 4, расположенных таким образом, что образуются два параллельных ряда полюсов, равноудаленных от оси генератора и чередующихся по полярности в продольном и поперечном направлениях (Фиг.2). Количество полюсов в одном ряду удовлетворяет соотношению: n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д. В данном случае (Фиг.1) n=14 (k=1) и соответственно общее число постоянных магнитных полюсов равно 28. При вращении электрогенератора каждая из катушек электромагнитов проходит над соответствующим рядом чередующихся полюсов. Постоянные магниты и сердечники электромагнитов имеют форму такую, чтобы минимизировать потери и добиться однородности (насколько это возможно) магнитного поля в воздушном зазоре при работе электрогенератора.

Принцип действия электрогенератора, выполненного в соответствии с настоящим изобретением, аналогичен принципу действия традиционного синхронного генератора. Вал ротора механически связан с приводным двигателем (источником механической энергии). Под действием вращающего момента приводного двигателя ротор генератора вращается с некоторой частотой. При этом в обмотке катушек электромагнитов в соответствии с явлением электромагнитной индукции наводится ЭДС. Поскольку катушки отдельного электромагнита имеют разное направление обмотки и находятся в любой момент времени в зоне действия различных магнитных полюсов, то наводимая ЭДС в каждой из обмоток складывается.

В процессе вращения ротора магнитное поле постоянного магнита вращается с некоторой частотой, поэтому каждая из обмоток электромагнитов попеременно оказывается то в зоне северного (N) магнитного полюса, то в зоне южного (S) магнитного полюса. При этом смена полюсов сопровождается изменением направления ЭДС в обмотках электромагнитов.

Обмотки каждого электромагнита соединены с устройством для выпрямления тока, которое обычно представляет собой одну из стандартных выпрямительных схем, выполненных на диодах: двухполупериодную со средней точкой или одну из мостовых схем.

На Фиг.3 представлена принципиальная электрическая схема двухполупериодного выпрямителя со средней точкой, для электрогенератора с тремя парами электромагнитов 10. На Фиг.3 электромагниты пронумерованы от I до VI. Один из выводов обмотки каждого электромагнита и разноименный с ним вывод обмотки противоположного электромагнита подключены к одному выходу 12 генератора; другие выводы обмоток названных электромагнитов подключены через диоды 11 к другому выходу 13 генератора (при данном включении диодов выход 12 будет отрицательным, а выход - 13 положительным). То есть если для электромагнита I начало обмотки (В) подключается к отрицательной шине, то для противоположного ему электромагнита IV к отрицательной шине подключается конец обмотки (Е). Аналогично и для других электромагнитов.

На Фиг.4-7 представлены различные мостовые схемы выпрямления тока. Соединение мостов, выпрямляющих ток от каждого из электромагнитов, может быть параллельное, последовательное или смешанное. Вообще различные схемы используют для перераспределения выходных токовых и потенциальных характеристик электрогенератора. Один и тот же электрогенератор, в зависимости от режимов эксплуатации, может иметь ту или иную схему выпрямления. Предпочтительно, чтобы электрогенератор содержал дополнительный переключатель, позволяющий выбирать требуемый режим работы (схему соединения мостов).

На Фиг.4 представлена принципиальная электрическая схема электрогенератора с одной из мостовых схем выпрямления тока. Каждый из электромагнитов I-VI подключен к отдельному мосту 15, которые в свою очередь соединены параллельно. Общие шины подключены соответственно к отрицательному выходу 12 электрогенератора или к положительному 13.

На Фиг.5 представлена электрическая схема с последовательным соединением всех мостов.

На Фиг.6 представлена электрическая схема со смешанным соединением. Мосты, выпрямляющие ток от электромагнитов: I и II; III и IV; V и VI, соединены попарно последовательно. А пары в свою очередь соединены параллельно через общие шины.

На Фиг.7 представлена принципиальная электрическая схема электрогенератора, в которой отдельный мост выпрямляет ток от пары диаметрально противоположных электромагнитов. Для каждой пары диаметрально противоположных электромагнитов одноименные выводы (в данном случае «В») электрически соединены между собой, а оставшиеся выводы подсоединены к выпрямляющему мосту 15. Общее количество мостов равно m/2. Между собой мосты могут быть соединены параллельно и/или последовательно. На Фиг.7 изображено параллельное соединение мостов.

В зависимости от особенностей эксплуатации электрогенератора ротор может располагаться как с внешней стороны статора, так и внутри статора. На Фиг.8 изображена схема электрогенератора с наружным исполнением ротора (10 электромагнитов; 36=18+18 постоянных магнитов (k=2)). Конструкция и принцип действия такого электрогенератора аналогичны описанному выше.

Электрогенератор, выполненный в соответствии с настоящим изобретением, может включать несколько секций А, В и С (Фиг.9). Количество таких секций зависит от мощности источника механической энергии (приводного двигателя) и требуемых параметров электрогенератора. Каждая из секций соответствует одной из конструкций, описанных выше. Электрогенератор может включать как идентичные секции, так и секции, отличающиеся друг от друга числом постоянных магнитов и/или электромагнитов или схемой выпрямления.

Предпочтительно, чтобы идентичные секции были сдвинуты по фазе относительно друг друга. Это может достигаться, например, начальным сдвигом ротора в соседних секциях и угловым сдвигом электромагнитов статора в соседних секциях относительно друг друга.

Примеры реализации:

Пример 1. В соответствии с настоящим изобретением был изготовлен электрогенератор для питания электроприборов напряжением до 36 В. Электрогенератор выполнен с вращающимся внешним ротором, на котором размещено 36 постоянных магнитов (по 18 в каждом ряду, k=2), изготовленных из сплава Fe-Nd-В. Статор несет 8 пар электромагнитов, каждый из которых имеет по две катушки, содержащие по 100 витков провода ПЭТВ диаметром 0,9 мм. Схема включения - мостовая, с соединением одноименных выводов диаметрально противоположных электромагнитов (Фиг.7).

внешний диаметр - 167 мм;

напряжение на выходе - 36 В;

максимальный ток - 43 А;

мощность - 1,5 кВт.

Пример 2. В соответствии с настоящим изобретением был изготовлен электрогенератор для подзарядки блоков питания (пара батарей на 24 В) для электромобилей городского типа. Электрогенератор выполнен с вращающимся внутренним ротором, на котором размещено 28 постоянных магнитов (по 14 в каждом ряду, k=1), изготовленных из сплава Fe-Nd-В. Статор несет 6 пар электромагнитов, каждый из которых имеет по две катушки, содержащие по 150 витков, намотанных проводом ПЭТВ диаметром 1,0 мм. Схема включения - двухполупериодная со средней точкой (Фиг.3).

Электрогенератор обладает следующими параметрами:

внешний диаметр - 177 мм;

напряжение на выходе - 31 В (для зарядки 24 В блока аккумуляторов);

максимальный ток - 35А,

максимальная мощность - 1,1 кВт.

Дополнительно электрогенератор содержит автоматический регулятор напряжения на 29,2 В.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Электрогенератор, содержащий, по крайней мере, одну круговую секцию, включающую ротор с круговым магнитопроводом, на котором с одинаковым шагом закреплено четное количество постоянных магнитов, образующих два параллельных ряда полюсов с продольно и поперечно чередующейся полярностью, статор, несущий четное число подковообразных электромагнитов, расположенных попарно напротив друг друга, устройство для выпрямления электрического тока, где каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки, при этом каждая из катушек электромагнитов расположена над одним из параллельных рядов полюсов ротора и количество полюсов в одном ряду равное n удовлетворяет соотношению

n=10+4k, где k - целое число, принимающее значения 0, 1, 2, 3 и т.д.

2. Электрогенератор по п.1, отличающийся тем, что количество электромагнитов статора m удовлетворяет соотношению m n-2.

3. Электрогенератор по п.1, отличающийся тем, что устройство для выпрямления электрического тока содержит диоды, подключенные к, по крайней мере, одному из выводов обмоток электромагнитов.

4. Электрогенератор по п.3, отличающийся тем, что диоды подключены по двухполупериодной со средней точкой схеме.

5. Электрогенератор по п.3, отличающийся тем, что диоды подключены по мостовой схеме.

6. Электрогенератор по п.5, отличающийся тем, что количество мостов равно m, и они соединены между собой последовательно, или параллельно, или последовательно-параллельно.

7. Электрогенератор по п.5, отличающийся тем, что количество мостов равно m/2 и одни из одноименных выходов каждой пары диаметрально противоположных электромагнитов соединены между собой, а другие подключены к одному мосту.

8. Электрогенератор по любому из пп.1-7, отличающийся тем, что ротор расположен с внешней стороны статора.

9. Электрогенератор по любому из пп.1-7, отличающийся тем, что ротор расположен внутри статора.

10. Электрогенератор по п.1, отличающийся тем, что содержит, по крайней мере, две идентичные секции.

11. Электрогенератор по п.10, отличающийся тем, что, по крайней мере, две секции сдвинуты по фазе относительно друг друга.

12. Электрогенератор по п.1, отличающийся тем, что содержит, по крайней мере, две секции, различающиеся числом электромагнитов.

13. Электрогенератор по п.1, отличающийся тем, что дополнительно содержит блок регулятора напряжений.