Рука манипулятор своими руками в домашних условиях. Промышленный робот-манипулятор: все могу и все умею


Здравствуйте!

Рассказываем о линейке коллаборативных роботов-манипуляторов Universal Robots .

Компания Юниверсал-роботс родом из Дании, занимается выпуском коллаборативных роботов-манипуляторов для автоматизации циклических производственных процессов. В этой статье приведем их основные технические характеристики и рассмотрим области применения.

Что это?

Продукция компании представлена линейкой из трех облегченных промышленных манипуляционных устройств с разомкнутой кинематической цепью:
UR3 , UR5 , UR10 .
Все модели имеют 6 степеней подвижности: 3 переносные и 3 ориентирующие. Устройства от Юниверсал-роботс производят только угловые перемещения.
Роботы-манипуляторы разделены на классы, в зависимости от предельно допустимой полезной нагрузки. Другими отличиями являются - радиус рабочей зоны, вес и диаметр основания.
Все манипуляторы UR оснащены датчиками абсолютного положения высокой точности, которые упрощают интеграцию с внешними устройствами и оборудованием. Благодаря компактному исполнению, манипуляторы UR не занимают много места и могут устанавливаться в рабочих секциях или на производственных линиях, где не помещаются обычные роботы.Характеристики:
Чем интересны Простота программирования

Специально разработанная и запатентованная технология программирования позволяет операторам, не владеющим специальными навыками, быстро выполнить настройку роботов-манипуляторов UR и управлять ими с помощью интуитивной технологии 3D-визуализации. Программирование происходит путем серии простых передвижений рабочего органа манипулятора в необходимые положения, либо нажатием стрелок в специальной программе на планшете.UR3: UR5: UR10: Быстрая настройка

Оператору, выполняющему первичный запуск оборудования, потребуется менее часа для распаковки, монтажа и программирования первой простой операции. UR3: UR5: UR10: Коллаборативность и безопасность

Манипуляторы UR способны заменить операторов, выполняющих рутинные задачи в опасных и загрязненных условиях. В системе управления ведется учет внешних возмущающих воздействий, оказываемых на робот-манипулятор в процессе работы. Благодаря этому, манипуляционные системы UR можно эксплуатировать без защитных ограждений, рядом с рабочими местами персонала. Системы безопасности роботов одобрены и сертифицированы TÜV – Союзом работников технического надзора Германии.
UR3: UR5: UR10: Многообразие рабочих органов

На конце промышленных манипуляторов UR предусмотрено стандартизированное крепление для установки специальных рабочих органов. Между рабочим органом и конечным звеном манипулятора можно установить дополнительные модули силомоментных сенсоров или камер.Возможности применения

С промышленными роботами-манипуляторами UR открываются возможности автоматизации практически всех циклических рутинных процессов. Устройства компании Юниверсал-роботс отлично зарекомендовали себя в различных областях применения.

Перекладка

Установка манипуляторов UR на участках перекладки и упаковки позволяет увеличить точность и уменьшить усадку. Большинство операций по перекладке может осуществляться без надзора.Полировка, буферовка, шлифовка

Встроенная система датчиков позволяет контролировать точность и равномерность прикладываемого усилия на криволинейных и неровных поверхностях.

Литье под давлением

Высокая точность повторяющихся движений позволяет применять роботы UR для задач переработки полимеров и инжекционного литья.
Обслуживание станков с ЧПУ

Класс защиты оболочки обеспечивает возможность установки манипуляционных систем для совместной работы со станками ЧПУ.Упаковка и штабелирование

Традиционные технологии автоматизации отличаются громоздкостью и дороговизной. Легко настраиваемые роботы UR способны работать без защитных экранов рядом с сотрудниками или без них 24 часа в сутки, обеспечиваю высокую точность и производительность.Контроль качества

Роботизированный манипулятор с видеокамерами пригоден для проведения трехмерных измерений, что является дополнительной гарантией качества выпускаемой продукции.Сборка

Простое устройство крепления рабочего органа позволяет оснащать роботы UR подходящими вспомогательными механизмами, необходимыми для сборки деталей из дерева, пластика, металла и других материалов.Свинчивание

Система управления позволяет контролировать развиваемый момент во избегании избыточной затяжки и обеспечения требуемого натяжения.Склеивание и сварка

Высокая точность позиционирования рабочего органа позволяет сократить количество отходов при выполнении операций склейки или нанесения веществ.
Промышленные роботы-манипуляторы UR могут выполнять различные типы сварки: дуговую, точечную, ультразвуковую и плазменную.Итого:

Промышленные манипуляторы от Юниверсал-роботс компактны, легки, просты в освоении и обращении. Роботы UR – гибкое решение для широкого круга задач. Манипуляторы можно запрограммировать на любые действия присущие движениям человеческой руки, а вращательные движения им удаются намного лучше. Манипуляторам не свойственны усталость и боязнь получить травму, не нужны перерывы и выходные.
Решения от Юниверсал-роботс позволяют автоматизировать любой рутинный процесс, что увеличивает скорость и качество производства.

Обсудите автоматизацию ваших производственных процессов с помощью манипуляторов Юниверсал-роботс с официальным дилером -


Подключение:

Если Вы собрали детали манипулятора в соответствии с инструкцией, то можно приступить к сборке электронной схемы. Мы предлагаем подключить сервоприводы манипулятора к Arduino UNO через Trerma-Power Shield , а управлять сервоприводами используя Trema-потенциометры .

  • Поворот ручки первого Trema-потенциометра приведёт к повороту основания.
  • Поворот ручки второго Trema-потенциометра приведёт к повороту левого плеча.
  • Поворот ручки третьего Trema-потенциометра приведёт к повороту правого плеча.
  • Поворот ручки четвёртого Trema-потенциометра приведёт в движение захват.

В коде программы (скетче) предусмотрена защита сервоприводов , которая заключается в том, что диапазон их вращения ограничен интервалом (двумя углами) свободного хода. Минимальный и максимальный угол вращения указываются в качестве двух последних аргументов функции map() для каждого сервопривода . А значение этих углов определяется в процессе калибровки, которую нужно выполнить до начала работы с манипулятором.

Код программы:

Если вы подадите питание, до калибровки, манипулятор может начать двигаться неадекватно! Сначала выполните все шаги калибровки.

#include // Подключаем библиотеку Servo для работы с сервоприводами Servo servo1; // Объявляем объект servo1 для работы с сервоприводом основания Servo servo2; // Объявляем объект servo2 для работы с сервоприводом левого плеча Servo servo3; // Объявляем объект servo3 для работы с сервоприводом правого плеча Servo servo4; // Объявляем объект servo4 для работы с сервоприводом захвата int valR1, valR2, valR3, valR4; // Объявляем переменные для хранения значений потенциометров // Назначаем выводы: const uint8_t pinR1 = A2; // Определяем константу с № вывода потенциометра управл. основанием const uint8_t pinR2 = A3; // Определяем константу с № вывода потенциометра управл. левым плечом const uint8_t pinR3 = A4; // Определяем константу с № вывода потенциометра управл. правым плечом const uint8_t pinR4 = A5; // Определяем константу с № вывода потенциометра управл. захватом const uint8_t pinS1 = 10; // Определяем константу с № вывода сервопривода основания const uint8_t pinS2 = 9; // Определяем константу с № вывода сервопривода левого плеча const uint8_t pinS3 = 8; // Определяем константу с № вывода сервопривода правого плеча const uint8_t pinS4 = 7; // Определяем константу с № вывода сервопривода захвата void setup(){ // Код функции setup выполняется однократно: Serial.begin(9600); // Инициируем передачу данных в монитор последовательного порта servo1.attach(pinS1); // Назначаем объекту servo1 управление сервоприводом 1 servo2.attach(pinS2); // Назначаем объекту servo2 управление сервоприводом 2 servo3.attach(pinS3); // Назначаем объекту servo3 управление сервоприводом 3 servo4.attach(pinS4); // Назначаем объекту servo4 управление сервоприводом 4 } void loop(){ // Код функции loop выполняется постоянно: valR1=map(analogRead(pinR1), 0, 1024, 10, 170); servo1.write(valR1); // Вращаем основанием Указанные в данной строке углы: 10 и 170 возможно потребуется изменить (откалибровать) valR2=map(analogRead(pinR2), 0, 1024, 80, 170); servo2.write(valR2); // Управляем левым плечом Указанные в данной строке углы: 80 и 170 возможно потребуется изменить (откалибровать) valR3=map(analogRead(pinR3), 0, 1024, 60, 170); servo3.write(valR3); // Управляем правым плечом Указанные в данной строке углы: 60 и 170 возможно потребуется изменить (откалибровать) valR4=map(analogRead(pinR4), 0, 1024, 40, 70); servo4.write(valR4); // Управляем захватом Указанные в данной строке углы: 40 и 70 возможно потребуется изменить (откалибровать) Serial.println((String) "A1 = "+valR1+",\t A2 = "+valR2+", \t A3 = "+valR3+", \t A4 = "+valR4); // Выводим углы в монитор }

Калибровка:

Перед началом работы с манипулятором, его нужно откалибровать!

    Калибровка заключается в указании крайних значений угла поворота для каждого сервопривода, так чтобы детали не мешали их движениям.
  • Отсоедините все сервоприводы от Trema-Power Shield, загрузите скетч и подключите питание.
  • Откройте монитор последовательного порта.
  • В мониторе будут отображаться углы поворота каждого сервопривода (в градусах).
  • Подключите первый сервопривод (управляющий вращением основания) к выводу D10.
  • Поворот ручки первого Trema-потенциометра (вывод A2) приведёт к повороту первого сервопривода (вывод D10), а в мониторе изменится значение текущего угла этого сервопривода (значение: A1 = ...). Крайние положения первого сервопривода будут лежать в диапазоне, от 10 до 170 градусов (как написано в первой строке кода loop). Этот диапазон можно изменить, заменив значения последних двух аргументов функции map() в первой строке кода loop, на новые. Например, заменив 170 на 180, Вы увеличите крайнее положение сервопривода в данном направлении. А заменив 10 на 20, Вы уменьшите другое крайнее положение того же сервопривода.
  • Если Вы заменили значения, то нужно заново загрузить скетч. Теперь сервопривод будет поворачиваться в новых, заданных Вами, пределах.
  • Подключите второй сервопривод (управляющий поворотом левого плеча) к выводу D9.
  • Поворот ручки второго Trema-потенциометра (вывод A3) приведёт к повороту второго сервопривода (вывод D9), а в мониторе изменится значение текущего угла этого сервопривода (значение: A2 = ...). Крайние положения второго сервопривода будут лежать в диапазоне, от 80 до 170 градусов (как написано во второй строке кода loop скетча). Этот диапазон изменяется так же как и для первого сервопривода.
  • Если Вы заменили значения, то нужно заново загрузить скетч.
  • Подключите третий сервопривод (управляющий поворотом правого плеча) к выводу D8. и аналогичным образом осуществите его калибровку.
  • Подключите четвертый сервопривод (управляющий захватом) к выводу D7. и аналогичным образом осуществите его калибровку.

Калибровку достаточно выполнить 1 раз, после сборки манипулятора. Внесённые Вами изменения (значения предельных углов) сохранятся в файле скетча.

Одной из основных движущих сил автоматизации современного производства являются промышленные роботы-манипуляторы. Их разработка и внедрение позволили выйти предприятиям на новый научно-технический уровень выполнения задач, перераспределить обязанности между техникой и человеком, повысить производительность. О видах роботизированных помощников, их функционале и ценах поговорим в статье.

Помощник №1 – робот-манипулятор

Промышленность – фундамент большинства экономик мира. От качества предлагаемых товаров, объемов и ценообразования зависит доход не только отдельно взятого производства, но и государственного бюджета.

В свете активного внедрения автоматизированных линий и повсеместного использования умной техники возрастают требования к поставляемой продукции. Выдержать конкуренцию без использования автоматизированных линий или промышленных роботов-манипуляторов сегодня практически невозможно.

Как устроен промышленный робот

Робот-манипулятор выглядит как огромная автоматизированная «рука» под контролем системы электроуправления. В конструкции устройств отсутствует пневматика или гидравлика, все построено на электромеханике. Это позволило сократить стоимость роботов и повысить их долговечность.

Промышленные роботы могут быть 4-х осевыми (используются для укладки и фасовки) и 6-ти осевыми (для остальных видов работ). Кроме того, роботы отличаются и в зависимости от степени свободы: от 2 до 6. Чем он выше, тем точнее манипулятор воссоздает движение человеческой руки: вращение, перемещение, сжатие/разжатие, наклоны и прочее.
Принцип действия устройства зависит от его программного обеспечения и оснащения, и если в начале своего развития основная цель была освобождение работников от тяжелого и опасного вида работ, то сегодня спектр выполняемых задач значительно возрос.

Использование роботизированных помощников позволяет справляться одновременно с несколькими задачами:

  • сокращение рабочих площадей и высвобождение специалистов (их опыт и знания могут быть использованы на другом участке);
  • увеличение объемов производства;
  • повышение качества продукции;
  • благодаря непрерывности процесса сокращается цикл изготовления.

В Японии, Китае, США, Германии на предприятиях работает минимум сотрудников, обязанностью которых является лишь контроль работы манипуляторов и качество изготавливаемой продукции. Стоит отметить, что промышленный робот-манипулятор – это не только функциональный помощник в машиностроении или сварочном деле. Автоматизированные устройства представлены в широком ассортименте и используются в металлургии, легкой и пищевой промышленности. В зависимости от потребностей предприятия можно подобрать манипулятор, соответствующий функциональным обязанностям и бюджету.

Виды промышленных роботов-манипуляторов

На сегодняшний день существует около 30 видов роботизированных рук: от универсальных моделей до узкоспециализированных помощников. В зависимости от выполняемых функций, механизмы манипуляторов могут отличаться: так например, это могут быть сварочные работы, резка, сверление, гибка, сортировка, укладка и упаковка товаров.

В отличие от существующего стереотипа о дороговизне роботизированной техники, каждое, даже небольшое предприятие, сможет приобрести подобный механизм. Небольшие универсальные роботы-манипуляторы с небольшой грузоподъемностью (до 5кг) ABB, и FANUC будут стоить от 2 до 4 тысяч долларов.
Несмотря на компактность устройств, они способны увеличить скорость работы и качество обработки изделий. Под каждого робота будет написано уникальное ПО, которое в точности координирует работу агрегата.

Узкоспециализированные модели

Роботы сварщики нашли свое наибольшее применение в машиностроении. Благодаря тому, что устройства способны сваривать не только ровные детали, но и эффективно проводить сварочные работы под углом, в труднодоступных местах устанавливают целые автоматизированные линии.

Запускается конвейерная система, где каждый робот за определенное время проделывает свою часть работы, а после линия начинает двигаться к следующему этапу. Организовать такую систему с людьми достаточно непросто: никто из работников не должен отлучаться ни на секунду, в противном случае сбивается весь производственный процесс, либо появляется брак.

Сварщики
Самыми распространенными вариантами являются сварочные роботы. Их производительность и точность в 8 раз выше, чем у человека. Такие модели могут выполнять несколько видов сварки: дуговая или точечная (в зависимости от ПО).

Лидерами в данной области считаются промышленные роботы-манипуляторы Kuka. Стоимость от 5 до 300 тысяч долларов (в зависимости от грузоподъемности и функций).

Сборщики, грузчики и упаковщики
Тяжелый и вредный для человеческого организма труд стал причиной появления в этой отрасли автоматизированных помощников. Роботы упаковщики за считанные минуты подготавливают товар к отгрузке. Стоимость таких роботов до 4 тысяч долларов.

Производители ABB, KUKA, и Epson предлагают воспользоваться устройствами для подъема тяжелых грузов весом больше 1 тонны и транспортировку от склада к месту погрузки.

Производители промышленных роботов манипуляторов

Бесспорными лидерами в данной отрасли считаются Япония и Германия. На их долю приходится более 50% всей роботизированной техники. Конкурировать с гигантами, непросто, однако, и в странах СНГ постепенно появляются собственные производители и стартапы.

KNN Systems. Украинская компания является партнером немецкой Kuka и занимается разработкой проектов по роботизации процессов сварки, фрезеровки, плазменной резки и паллетизации. Благодаря их ПО промышленный робот может быть перенастроен под новый вид задач всего за один день.

Rozum Robotics (Беларусь). Специалисты компании разработали промышленный робот-манипулятор PULSE, отличающийся своей легкостью и простотой в использовании. Устройство подходит для сборки, упаковки, склеиванию и перестановки деталей. Цена робота в районе 500 долларов.

«АРКОДИМ-Про» (Россия). Занимается выпуском линейных роботов-манипуляторов (двигаются по линейным осям), используемых для литья пластика под давлением. Кроме того, роботы ARKODIM могут работать, как часть конвейерной системы, и выполнять функции сварщика или упаковщика.

Сначала будут затронуты общие вопросы, потом технические характеристики результата, детали, а под конец и сам процесс сборки.

В целом и общем

Создание данного устройства в целом не должно вызвать каких-то сложностей. Необходимо будет качественно продумать только возможности что будет довольно сложно осуществить с физической точки зрения, чтобы рука-манипулятор выполняла поставленные перед ней задачи.

Технические характеристики результата

Будет рассматриваться образец с параметрами длины/высоты/ширины соответственно 228/380/160 миллиметров. Вес сделанной, будет составлять примерно 1 килограмм. Для управления используется проводной дистанционный пульт. Ориентировочное время сборки при наличии опыта - около 6-8 часов. Если его нет, то могут уйти дни, недели, а при попустительстве и месяцы, чтобы была собрана рука-манипулятор. Своими руками и одному в таких случаях стоит делать разве что для своего собственного интереса. Для движения составляющих используются коллекторные моторы. Приложив достаточно усилий, можно сделать прибор, который будет поворачиваться на 360 градусов. Также для удобства работы, кроме стандартного инструментария вроде паяльника и припоя, необходимо запастись:

  1. Удлинёнными плоскогубцами.
  2. Боковыми кусачками.
  3. Крестовой отверткой.
  4. 4-мя батарейками типа D.

Пульт дистанционного управления можно реализовать, используя кнопки и микроконтроллер. При желании сделать дистанционное беспроводное управление элемент контроля действий понадобится и в руке-манипуляторе. В качестве дополнений необходимы будут только устройства (конденсаторы, резисторы, транзисторы), которые позволят стабилизировать схему и передавать по ней в нужные моменты времени ток необходимой величины.

Мелкие детали

Для регуляции количества оборотов можно использовать переходные колесики. Они позволят сделать движение руки-манипулятора плавными.

Также необходимо позаботится о том, чтобы провода не усложняли её движения. Оптимальным будет проложить их внутри конструкции. Можно сделать всё и извне, такой подход сэкономит время, но потенциально может привести к сложностям в перемещении отдельных узлов или всего устройства. А теперь: как сделать манипулятор?

Сборка в общих чертах

Теперь приступаем непосредственно к созданию руки-манипулятора. Начинаем с основания. Необходимо обеспечить возможность поворота устройства во все стороны. Хорошим решением будет его размещение на дисковой платформе, которая приводится во вращение с помощью одного мотора. Чтобы она могла вращаться в обе стороны, существует два варианта:

  1. Установка двух двигателей. Каждый из них будет отвечать за поворот в конкретную сторону. Когда один работает, второй пребывает в состоянии покоя.
  2. Установка одного двигателя со схемой, которая сможет заставить его крутится в обе стороны.

Какой из предложенных вариантов выбрать, зависит исключительно от вас. Далее делается основная конструкция. Для комфорта работы необходимо два «сустава». Прикреплённый к платформе должен уметь наклоняться в разные стороны, что решается с помощью двигателей, размещённых в его основании. Ещё один или пару следует разместить в месте локтевого изгиба, чтобы часть захвата можно было перемещать по горизонтальной и вертикальной линии системы координат. Далее, при желании получить максимальные возможности, можно установить ещё двигатель в месте запястья. Далее наиболее необходимое, без чего не представляется рука-манипулятор. Своими руками предстоит сделать само устройство захвата. Тут существует множество вариантов реализации. Можно дать наводку по двум самым популярным:

  1. Используется только два пальца, которые одновременно сжимают и разжимают объект захвата. Является самой простой реализацией, которая, правда, обычно не может похвастаться значительной грузоподъёмностью.
  2. Создаётся прототип человеческой руки. Тут для всех пальцев может использоваться один двигатель, с помощью которого будет осуществляться сгиб/разгиб. Но можно сделать и конструкцию сложней. Так, можно к каждому пальцу подсоединить по двигателю и управлять ими отдельно.

Далее остаётся сделать пульт, с помощью которого будет оказываться влияние на отдельные двигатели и темпы их работы. И можно приступать к экспериментам, используя робот-манипулятор, своими руками сделанный.

Возможные схематические изображения результата

Предоставляет широкие возможности для творческих измышлений. Поэтому предоставляются вашему вниманию несколько реализаций, которые можно взять за основу для создания своего собственного устройства подобного предназначения.

Любая представленная схема манипулятора может быть усовершенствована.

Заключение

Важным в робототехнике является то, что практически не существует ограничения по функциональному улучшению. Поэтому при желании создать настоящее произведение искусства не составит труда. Говоря о возможных путях дополнительного улучшения, следует отметить кран-манипулятор. Своими руками сделать такое устройство не составит труда, одновременно оно позволит приучить детей к творческому труду, науке и конструировании. А это в свою очередь позитивно может сказаться на их будущей жизни. Сложно ли будет сделать кран-манипулятор своими руками? Это не так проблемно, как может показаться на первый взгляд. Разве что стоит позаботиться о наличии дополнительных мелких деталей вроде троса и колёс, по которым он будет крутиться.

Имеет подсветку. Всего робот работает на 6-ти серводвигателях. Для создания механической части использовался акрил толщиной два миллиметра. Для изготовления штатива было взято основание от диско-шара, при этом один мотор строен прямо в него.

Робот работает на плате Arduino . В качестве источника питания используется компьютерный блок.

Материалы и инструменты:
- 6 серводвигателей;
- акрил толщиной 2 мм (и еще небольшой кусок толщиной 4 мм);
- штатив (для создания основания);
- ультразвуковой датчик расстояния типа hc-sr04;
- контроллер Arduino Uno;
- контроллер питания (изготавливается самостоятельно);
- блок питания от компьютера;
- компьютер (нужен для программирования Arduino);
- провода, инструменты и прочее.



Процесс изготовления:

Шаг первый. Собираем механическую часть робота
Механическая часть собирается очень просто. Два куска акрила нужно соединить с помощью серводвигателя. Другие два звена соединяются аналогичным образом. Что касается схвата, то его лучше всего купить через интернет. Все элементы крепятся с помощью винтов.

Длина первой части составляет порядка 19 см, а второй примерно 17.5 см. Переднее звено имеет длину 5.5 см. Что касается остальных элементов, то их размеры выбираются на личное усмотрение.





Угол поворота в основании механической руки должен составлять 180 градусов, поэтому снизу нужно установить серводвигатель. В нашем случае его нужно установить в диско-шар. Робот же устанавливается уже на серводвигатель.

Для установки ультразвукового датчика понадобится кусок акрила толщиной 2 см.

Чтобы установить схват будет нужно несколько винтов и серводвигатель. Нужно взять качалку от серводвигателя и укорачивать ее до тех пор, пока она не подойдет ко схвату. Затем можно закрутить два маленьких винта. После установки серводвигатель нужно повернуть в крайнее левое положение и свести губки захвата.

Теперь серводвигатель крепится на 4 болта, при этом важно следить, чтобы он находился в крайнем левом положении, а губы были сведены.
Теперь сервпривод можно подключить к плате и проверить, работает ли схват.








Шаг второй. Подсветка робота
Чтобы робот был интереснее, ему можно сделать подсветку. Делается это с помощью светодиодов разнообразных цветов.


Шаг третий. Подключение электронной части
Основным контроллером для робота является плата Arduino. В качестве источника питания используется компьютерный блок, на его выходах нужно найти напряжение 5 Вольт. Оно должно быть, если замерить мультиметром напряжение на красном и черном проводе. Это напряжение нужно для питания серводвигателей и датчика расстояния. Желтый и черный провод блока выдает уже 12 Вольт, они нужны для работы Arduino.

Для сервомоторов нужно сделать пять коннекторов. К позитивным подключаем 5В, а негативные к земле. Аналогичным образом подключается и датчик расстояния.

Еще на плате имеется светодиодный индикатор питания. Для его подключения используется резистор 100 Ом между +5В и землей.










Выходы от серводвигателей подключаются к ШИМ-выходам на Arduino. Такие пины на плате обозначаются значком «~». Что касается ультразвукового датчика расстояния, то его можно подключить к пинам 6 и 7. Светодиод подключается к земле и 13-му пину.

Теперь можно приступать к программированию. Перед тем как подключаться через USB, нужно убедиться, что питание полностью отключено. При тестировании программы питание робота тоже нужно отключать. Если это не сделать, контроллер получить 5В от USB и 12В от блока питания.

На схеме можно увидеть, что для управления серводвигателями были добавлены потенциометры. Они не являются необходимой составляющей робота, но без них предложенный код работать не будет. Потенциометры подключаются к пинам 0,1,2,3 и 4.

На схеме есть резистор R1, его можно заменить потенциометром на 100 кОм. Это позволит регулировать яркость вручную. Что касается резисторов R2, то их номинал 118 Ом.

Вот перечень основных узлов, которые применялись:
- 7 светодиодов;
- R2 - резистор на 118 Ом;
- R1 - резистор на 100 кОм;
- переключатель;
- фоторезистор;
- транзистор bc547.

Шаг четвертый. Программирование и первый запуск робота
Чтобы управлять роботом, было использовано 5 потенциометров. Вполне реально заменить такую схему на один потенциометр и два джойстика. Как подключить потенциометр, было показано в предыдущем шаге. После установки скеча робота можно испытать.

Первые испытания робота показали, что установленные серводвигатели типа futuba s3003 оказались слабыми для робота. Их можно применять лишь для поворота руки или для схвата. Вместо них автор установил двигатели mg995. Идеальным вариантом будут двигатели типа mg946.