Электрический ток течет в проводе какое явление. Как течет ток


Ы уже знаем, что в металлах есть свободные элек­троны и что они движутся совершенно беспорядочно. Однако это движение можно отчасти упорядочить: с по­мощью электрического поля можно заставить свобод­ные электроны течь по металлу общим потоком в нуж­ном направлении, то-есть получить электрический ток.

Есть простой опыт, доказывающий, что ток в метал­лах - это действительно поток электронов, а не поло­жительных зарядов. Этот опыт впервые поставили со­ветские учёные Л. И. Мандельштам и Н. Д. Папа-- лекси.

Чтобы лучше разобраться в этом интересном опыте, рассмотрим сначала такой пример. Возьмём стакан с водой, подвесим его на нити и, закрутив нить, заставим стакан вращаться. Постепенно вода начинает вращаться вместе со стаканом. Если теперь внезапно остановить стакан, то вода ещё некоторое время будет двигаться по инерции.

Простая идея этого опыта была использована Л. И. Мандельштамом и Н. Д. Папалекси. Мы опишем этот опыт очень упрощённо. Представим себе металли­ческое кольцо, вблизи которого подвешена лёгкая ма­гнитная стрелка (рис. 14). Известно, что электрический ток создаёт вокруг себя магнитное поле. Физики давно уже изучили действие этого поля на магнитную стрелку. Если бы по направлению, отмеченному на рисунке 14 стрелочками, по кольцу текли отрицательные заряды, то магнитная стрелка повернулась бы к кольцу южным
полюсом, а если положительные - то северным. Таким образом магнитная стрелка может указать, какие заряды и в каком направлении движутся по кольцу.

Приведём кольцо в быстрое вращение в том направ­лении, которое указано стрелками. Вместе с кольцом вращаются и положительные и отрицательные заряды, заключённые в металле, то-есть и свободные электроны и

«ионный скелет» ме - ЛУ /гУ/гУМ/N(Ш/ талла. При этом дей­ствие зарядов на стрелку взаимно пога-- сится. Стрелка оста­нется неподвижной.

Теперь резко оста­новим кольцо. При этом остановится «ион­ный скелет» металла, а свободные электроны будут некоторое время двигаться по инерции в прежнем направлении, так же, как вода в опыте с вращающимся Рис. 14. Схема опыта Л. И. Ман - стаканом. Это значит, дельштама и Н. Д. Папалекси. что появится электри­ческий ток. Стрелка должна повернуться к кольцу южным полюсом (рис. 14).

Опыт Мандельштама и Папалекси подтвердил это предположение. Таким образом было окончательно до­казано, что свободу движения в металле имеют отрица­тельные заряды и ток в металле - это поток электронов.

Между электрическим током в проводе и потоком воды в трубе есть большое сходство, которым можно вос­пользоваться, чтобы лучше понять, как ток течет по про­воду. Представим себе течение воды не в пустой трубе, а в трубе, плотно заполненной камнями. Камни поло­жены так тесно один к другому, что составляют как бы одно целое со стенками трубы, образуя настоящий «ка­менный скелет» в трубе. Промежутки между камнями заполнены водой (рис. 15).

Пока кран закрыт, напора воды нет и вода не течёт. Быстрым поворотом крана создадим напор. Он распро--
странится по трубе, конечно, не мгновенно, но всё же с большой скоростью - около одного километра в секунду. Значит, если труба не очень длинна, то почти сразу вода потечёт по всей трубе.

Отдельные молекулы воды всегда находятся в непре­рывном и беспорядочном движении. В потоке воды бес­порядочное движение, при котором каждая молекула движется сама по себе, вовсе не прекратится. Но это совершенно не мешает воде всей массой, общим потоком, течь по трубе. Сравнение молекул с роем мошек при­годно и здесь. Если рой мошек уносится потянувшим

Шт

Рис. 15. Поток электронов в проводе подобен течению воды в за­полненной камнями трубе.

Ветерком, беспорядочное движение отдельных мошек не прекращается, а весь рой целиком летит по ветру.

Вода течёт между камнями, преодолевая трение. А там, где есть трение, выделяется тепло. Нагревание сделается вполне заметным, если по трубе пройдёт много воды под большим напором.

Поток электронов в проводнике очень похож на по­ток воды в трубе. Представим себе вместо молекул воды свободные электроны, а вместо «каменного ске­лета» в трубе «скелет» из ионов металла. Электроны, как и молекулы воды, текут по проводу общим потоком, не прекращая при этом своего беспорядочного движения.

Движение электронного потока не проходит бесследно для провода. Между ионами и электронами тоже со­здаётся своего рода «трение», которое носит название электрического сопротивления. Следствием
«трения» между электронным потоком и ионами яв­ляется непрерывное выделение тепла в проводнике. На­гревание проводников током применяется буквально на каждом шагу: в самых отдалённых уголках нашей стра­ны светит «лампочка Ильича»; миллионы людей поль­зуются электроплитками, чайниками и утюгами; нет ни одною завода или лаборатории, где бы не было самых различных электропечей.

Вода по трубе течёт под напором. Это значит, что во всём объёме воды по всей трубе действует сила, подго­няющая молекулы воды. Но как создать силу, движущую свободные электроны по проводу? Как осуществить «электрический напор»?

Вообразим, что мы сумели создать на концах куска провода два слоя зарядов разных знаков. Например, «сняли» с левого конца провода некоторое количество свободных электронов и «перенесли» их на правый конец. Тогда между слоями зарядов разных знаков внутри про­вода получится электрическое поле такое же, как на рисунке И. На каждый электрон будет действовать сила, толкающая его к положительному слою. Все электроны двинутся справа налево, то-есть в проводе потечёт элек­трический ток. Можно сказать, что мы получили в про­воде электрический напор. Электротехники и физики на­зывают его напряжением.

Но что же будет дальше? Электроны войдут в поло­жительный слой и нейтрализуют его заряд. Напряжение исчезнет, и ток прекратится. Следовательно, для полу­чения постоянного, не прерывающегося тока в проводе нужно всё время поддерживать существование электри­ческого поля, придумать что-то вроде непрерывно дей­ствующего «электронного насоса», перекачивающего электроны с одного конца провода на другой.

В действительности роль «электронного насоса» исполняют гальванические элементы, аккумуляторы и динамомашины.

Особенно большое значение в технике имеют динамо- машины. Действие всех динамомашин основано на одном замечательном явлении: когда металлический провод

Движется поперёк магнитных силовых линий, в нём воз­никает ток. Как это происходит? Чтобы ответить на это, рассмотрим упрощённую модель динамомашины.

На рисунке 16 между полюсами магнита по двум ме­таллическим лентам движется отрезок провода (он обозна­чен буквами ЛБ). Сам он двигаться, конечно, не будет, его нужно двигать рукой; но и якорь, вращающаяся часть настоящей динамомашины, движется не сам - его вращает турбина или какой-нибудь другой двигатель.

К лентам присоединена лампочка, так что электрическая цепь всё время замкнута. В отрезке провода, как и во всяком куске металла, находятся электроны, которые движутся вместе с проводом под прямым углом к сило­вым магнитным линиям (направление движения отме­чено стрелкой).

Как мы уже знаем, направление движения электро­нов, направление силовых линий и направление силы, действующей на электроны, всегда взаимно перпендику­лярны. Значит, на электроны будут действовать силы, отмеченные на рисунке маленькими стрелками. Они го­нят электроны вдоль провода от Б к А. Электронам, на­капливающимся в А, открыт путь через лампочку. По этому пути они и устремятся. Когда отрезок провода дойдёт до края магнитного поля (на рисунке это поло­жение провода отмечено пунктиром), ток прекратится. Чтобы этого не случилось, нужно сразу же двинуть от­резок провода обратно. При этом ток, конечно, изменит направление, но лампочка гореть не перестанет, потому что тепло в проводнике выделяется независимо от на­правления тока. Если двигать отрезок провода АБ впе­рёд и назад между двумя крайними положениями, то через лампочку будет течь ток, меняющий своё направ­ление. На языке электротехники ток, меняющий своё направление, носит название «переменного тока».

В настоящих динамомашинах провода вращаются в магнитном поле. При этом также получается переменный, ток. Если нужно получить ток постоянного направления, переменный ток с помощью особых устройств «выпрям­ляют».

Таким образом, в динамомашине «электронным на­сосом» служит магнитное поле. Оно всё время пере­гоняет электроны от Б к А, и на концах отрезка, которые называются полюсами, всё время накапливаются заряды разных знаков. Значит, в проводах «внешней цепи» всё время будет действовать электрическое поле, будет су­ществовать «электрический напор».

Теперь посмотрим на рисунок 17. Он очень похож на рисунок 16. Разница только в том, что в цепь вместо лампочки включена батарея. Она гонит электроны по куску провода, лежащему на пластинах, в направлении, отмеченном на рисунке маленькими стрелками. Это на­правление перпендикулярно к магнитным силовым линиям. Значит, на каждый электрон будет действовать сила, направленная под прямым углом как к силовым линиям, так и к направлению движения электронов. Эти силы также показаны на рисунке стрелками. Электроны не могут вырваться из проводника. Этому, как мы знаем, препятствуют силы притяжения ионов металла. Но ма­ленькие силы, действующие на каждый электрон, в сумме дадут вполне заметную силу, которая увлечёт с собой весь провод и будет перемещать его по пластинкам.

Движение провода, по которому идёт ток, в магнит­ном поле используется в электромоторах.

Остаётся ещё один вопрос: через сколько времени

После того, как динамомашина пущена в ход (то-есть двинулся с места провод АБ на ри­сунке 16), загорится в цепи лампочка?

Заряды на полю­сах динамомашин со­здают в присоеди­нённом к ним про­воднике электриче­ское поле. Провод­ник может быть очень длинным и разветвлённым; та­кова, например, го­родская электросеть.

Но электрическое поле распространяет­ся с огромной скоро­стью. Эта скорость равна 300 ООО кило­метров в секунду.

Поэтому во всей сети - будь она дли­ной ХОТЬ В СОТНИ КИ-1

Лометров - элек­трическое поле по­явится мгновенно: сразу во всех прово­дах, во всех лам­почках и моторах свободные электроны начнут двигаться туда, куда гонит поле; сразу загорятся лампочки, зара­ботают моторы и т. д.

Не надо думать, что поток электронов в проводе те­чёт с той же огромной скоростью, с какой распростра­няется вдоль провода электрическое поле. Скорость по­тока электронов (не путать со скоростью беспорядочного движения отдельных электронов!), вообще говоря, зави­сит от напряжения - «электрического напора» (так же,
как скорость воды в трубе зависит от напора воды). Эта скорость невелика. Например, в светящейся нити элек­трической лампочки путь, проходимый электронным по­током за одну секунду, измеряется миллиметрами.

Итак, практическое использование электричества ос­новано, прежде всего, на том, что в металлах есть сво­бодные электроны, которыми мы можем легко управлять с помощью электрического поля.

Электронный поток в проводе можно в некотором от­ношении сравнить с поездом, движение которого направ­ляется рельсами. Машинист не нуждается в руле; его единственная забота - ускорять или тормозить поезд. Провод для электронного потока то же, что и рельсовый путь для поезда. Электроны в обычных условиях не мо­гут выйти из проводника. Нужно только создать необхо­димое напряжение на концах, и по проводнику любой формы потечёт ток.

Вопрос о том, что такое электрический ток, интересует даже маленьких детей. Их с детства пугают страшными розетками, которые могут ударить. Но даже многие взрослые не понимают, в каком направлении течет ток и каким образом. Давайте в этой статье и попробуем в этом разобраться.

Электрический ток

Сначала давайте поймем, что же это такое – электрический ток. В состав молекул входят элементарные, отрицательно заряженные частицы. Они называются электроны. Током называется их направленное движение. В том или ином материале имеются свободные электроны. Их наличие определяет его электропроводность.

Напряжение – это разность потенциалов. Направленное движение электронов возникает при ее наличии. При отсутствии разности потенциалов свободные электроны будут находиться в покое, и электрический ток идти не будет. Но, как только к материалу будет подключено напряжение, они начнут свое движение. Электроны будут отталкиваться от минуса, и двигаться в сторону плюса. Поэтому, отвечая на вопрос, как течет ток в проводнике, мы говорим – от минуса к плюсу. Это движение и будет носить название электрического тока.

Проще говоря, пока электрический прибор не будет включен в цепь, то есть до тех пор, пока в нем не возникнет разность потенциалов, ток в нем течь не будет. По этому принципу все проводники электричества и работают. Но, в таких материалах, как резина, дерево, стекло и многих других, свободные электроны отсутствуют. Даже при подключении к ним напряжения, ток они проводить не будут.

Теперь на вопросы ваших детей о том, как течет ток, вы будете знать, что ответить. Не забудьте им напомнить, что с электроприборами следует быть осторожными.

В школе, не помню уже в котором классе мне объяснили, что ток течёт от + к - . Т.е. если между выводами батарейки (были такие – КБС) вставить лампочку, то ток пройдёт по плюсовой клемме батарейки, затем через лампочку, она загорится и по минусовой клемме уйдёт в батарейку. Через пару лет учитель физики объяснил, что направление тока от + к - условно. Фактически ток – это движение электрических зарядов, из коих двигаться по проводу могут только свободные электроны. Т.е. ток течёт от – к + .

Необходимым условием появления тока является замкнутость цепи. В то время я уже осваивал 6П3С, подключённую к аноду выходной лампы вещательного приёмника, и в этом постулате нисколько не сомневался. Особенно после пары ударов этим током.

Дни бегут, складываются в года. Пошли первые проявления старческого маразма и видимо от этого что-то засомневался я в приобретённых школьных знаниях.

Вот имеем источник тока и замкнутую цепь с нагрузкой. Выбежал, неважно с какой клеммы, розовощёкий, уверенный в своих силах ток и помчался к нагрузке. Поборолся с ней, так как просто так отдаваться она не хотела и сопротивлялась, но ток сделал своё дело, правда отдал нагрузке часть своей энергии и потный и слегка бледный прибежал на вторую клемму источника.

Вроде бы реальная картина, закон сохранения энергии выполняется, только на проверку – фантастика! Проверка очень простая: вставим в цепь до нагрузки и после оной по амперметру. И что они показывают? А то, что величина тока до и после соития с нагрузкой ОДИНАКОВА!

Может ток наш врун и дела с нагрузкой не имел, поэтому амперметры и показывают одинаковый ток? Так нет же, если в качестве нагрузки была электролампочка, то мы видели свет. Трата энергии несомненно была! Но как же быть с тем, что вытекающий ток равен втекающему?

Чудны дела твои, господи!

Опыт N 2.

К каждой клемме источника присоединяем по проводку и попробуем определить знак потенциала на их концах. Поскольку ток это движение электронов, то вследствие емкости проводка и разности потенциалов между клеммой и проводом электроны побегут в провод и на его конце, подключенного к отрицательной клемме, мы обнаружим отрицательные заряды.

Из этого же определения тока следует, что на конце проводника, подключённого к положительной клемме, никаких зарядов не будет. Однако они там обнаруживаются. Причём положительные.

Стоп! Положительные по проводу не бегают! Откуда же они там взялись?

«А просто - говорят знающие люди - Источник отдал в провод часть электронов и недостачу восполнил, забрав такое же количество из другого провода. Поскольку в этом проводе образовалась нехватка электронов, то он «зарядился» положительно. Источник тока – это насос, перекачивающий электроны».

Вроде нормальное объяснение.

Стоп. Во-первых, количество свободных электронов не бесконечно, например, для медного проводника один свободный электрон приходится примерно на полтора-два миллиона атомов (1), а величина тока при КЗ о-го-го! Во-вторых, если к проводкам подключена нагрузка, а источник тока, по сути, является насосом (почему его тогда называют источником?), то энергия вытекающего тока должна быть больше энергии втекающего, так как что-то должно же рассеяться на нагрузке. А токи в проводниках равны по величине. (Второй раз о Создателе всуе не упоминаем).

Так как же течёт ток???

Что от плюса к минусу, что от минуса к плюсу – одна и та же проблема…

Чтобы как-то разобраться в ней логично начать с определений. В общепринятом понимании ток рассматривается как движение электрических зарядов. Это движение вызывается электродвижущей силой источника тока или разностью потенциалов при движении электрических зарядов по проводнику с заряженного объекта на незаряженный. Но нас интересует не движение зарядов, а то, как они переносят энергию.

Здесь общеприняты две модели. В первой электроны (носители зарядов) рассматриваются как «шарики», разгоняемые эдс или разностью потенциалов. Т.е., чем сильнее мы их разгоняем, тем больше энергии они приобретают. При встрече с нагрузкой «шарики» тормозятся, отдают ей часть энергии и естественно количество «шариков», проходящих в единицу времени через сечение проводника уменьшается. Во второй модели заряд является энергетическим образованием. Проходя через нагрузку, часть зарядов передаёт ей энергию и исчезает. В результате, величина токов в ветвях цепи неодинакова.

Противоречие между опытом и законом сохранения энергии остаётся. Либо в «консерватории» что-то надо подправить, либо мы чего-то недопонимаем.

Тем радиолюбителям, у которых эти логичные рассуждения вызывают протест, напомню, по крайней мере, два известных им факта.

1. Величина КСВ в начале фидера меньше, чем на входе нагрузки, им питаемой.

2. Амплитуда стоячих волн тока в LW или в вибраторе, запитанном посредине, длинной несколько λ, уменьшается от точки запитки к концу провода.

Известно объяснение этих фактов: потери током своей энергии при движении зарядов по проводнику.

Обратим внимание на нестыковки некоторых известных положений.

1. Скорость свободных электронов по проводнику не совпадает со скоростью распространения в нём тока.

2. Школьный электроскоп можно зарядить положительными зарядами. Если рядом с ним поставить незаряженный электроскоп и соединить их проводником, то в нём возникает кратковременный зарядный ток второго электроскопа. Т.е. по проводнику перетекли ПОЛОЖИТЕЛЬНЫЕ заряды. Что является их носителем?

3. Если в цепи постоянного тока включить два источника встречно, то каждый из них будет нагрузкой для другого, а ток в цепи будет иметь разностную величину. При переменном токе в случае его встречи с волновой неоднородностью цепи возникает отраженная токовая волна. Эта волна тока двигается навстречу основной и токи не противодействуют друг другу . Словно не замечают друг друга.

Следует честно признать, что мы не знаем, что такое электрический ток!

В общепринятой теории электрического тока указывается, что прежде тока в проводе распространяется электрическое поле, без которого движение зарядов немыслимо. Т.е. в приведенном Опыте N 2 по одному из проводников распространяется поле положительного потенциала, а по другому – отрицательного.

Есть предположение, что сами заряды являются безинерциальными (2). Можно предположить, что они являются энергетическими «сгустками» продольного электрического поля и поэтому в виде токовых волн могут распространяться от клеммы источника тока со скоростью поля в данной среде. Если проводники замкнуть на нагрузку, то каждая токовая волна отдаст ей часть своей энергии, а величина тока во «входящей» и «исходящей» ветвях цепи будет равна сумме величин токов истекающего из данной клеммы и истекшего с другой клеммы и прошедшего через нагрузку. Амперметры покажут одинаковый ток! Таким образом, закон сохранения энергии при равенстве токов во входящей и исходящей ветвях нагрузки СОХРАНЯЕТСЯ! А источник тока соответствует своему названию: ТОК ИСТЕКАЕТ ИЗ ОБЕИХ КЛЕММ!

Фантастика? Ничуть. Есть практические подтверждения этого предположения, хотя сами заряды гипотетичны.

Рассмотрим некоторые процессы в длинных фидерных линиях. Чтобы «примирить» скорость свободных электронов с фактической скоростью распространения энергии в линии, предположили, что энергия переносится ТЕМ-волной. Чтобы такая волна образовалась, в начале линии необходимо согласно Пойтингу, чтобы вектор магнитного поля был перпендикулярен плоскости, проходящей через два провода линии, а вектор электрического поля лежал в этой плоскости и был направлен от одного провода к другому. Первое условие выполняется при разном направлении токов в соседних проводах. Вариант «электронного насоса» успешно с этим справляется. А вот второе условие требует наличие в соседних проводах РАЗНОПОЛЯРНЫХ ЗАРЯДОВ!

Выполнить это условие «насос» не в состоянии. А вот безинерциальные заряды – вполне. Достаточно вспомнить, что направление движение тока принято условно. Если движение положительных зарядов от клеммы источника к нагрузке принимается за направление тока от клеммы, то движение отрицательных зарядов от клеммы к нагрузке принимается за направление тока к клемме. Т.е. при истечении тока с обеих клемм выполняются оба условия образования ТЕМ-волны. УСЛОВНОСТЬ НАПРАВЛЕНИЯ ТОКА СОЗДАЁТ ИЛЛЮЗИЮ ВЫТЕКАНИЯ ТОКА ИЗ ОДНОЙ КЛЕММЫ И ВТЕКАНИЯ ЕГО В ДРУГУЮ!

Не счесть, сколько заблуждений породила эта иллюзия. Но об этом позже.

Ещё один пример, подтверждающий предположение об истечении тока с обеих клемм – линия, замкнутая на конце, или более реальный пример – петлевая, рамочная антенна. Как известно из практики на конце линии или ровно посредине периметра рамки образуется пучность тока, величина которой без учёта потерь в линии или антенне равна удвоенной величине падающей волны тока. Попробуйте объяснить происхождение этой пучности тока без его истечения с обеих клемм? Не получится!

Всё изложенное не является моей выдумкой. Всё это в виде отдельных фрагментов приводится в учебниках. Например, понятие токовых волн встречается у Белоцерковского Б.Г. (3) в XI разделе. А Д.П.Линде (4) на стр. 17 приводит рисунок, иллюстрирующий эти самые токовые волны с движением в них положительных и отрицательных зарядов. Только авторы учебников не любят акцентировать внимание на нестыковках отдельных положений теории электрического тока и, рисуя радужную картину общего познания мироздания, скрывают от неокрепшего ума мысль, что Наука знает, что она ещё больше не знает!

Подведём итог. Скорее всего, носителями энергии кроме электронов и ионов являются энергетические образования, родственные электрическому полю. Переменный ток в виде токовых волн вытекает из обеих клемм источника и не нуждается в отличие от постоянного в гальванической замкнутости цепи. Постоянный ток можно представить как переменный с очень большим периодом колебания. Особенности тока, малозаметные при постоянном токе, весьма рельефны при переменном. Особенно с ростом его частоты.

Как только в руках радиолюбителей оказались моделировщики, они сразу бросились проверять с их помощью известные классические антенны и их системы. И некоторые результаты вызвали шок!

Например, оказалось, что во входном сопротивлении полуволнового вибратора, питаемого в разрыв полотна, при сдвиге точки питания из центра появляется реактивность. Откуда? Ведь вибратор имеет резонансную длину! А резонанс – он и в Африке резонанс! Именно он, как уверены многие, обеспечивает эффективную работу антенны!

Это заблуждение проистекает из модели тока, вытекающего с одной клеммы источника и втекающего в другую, что предполагает замкнутость цепи. Если же цепь гальванически не замкнута, то роль «замыкателя» отводится конденсатору, точнее – токам смещения «протекающим» в нём. На этой основе родилось убеждение, что антенн без противовеса не бывает. Ищите и обрящете! И если вы не видите «суслика», то он всё равно обязательно существует!

Например, И.В.Гончаренко (5) утверждает, что полуволновой вибратор, запитанный с конца, не работает без хотя бы маленького противовеса. В крайнем случае, противовесом выступает один из проводов линии питания. А если фидера нет и антенна питается напрямую? Всё равно «суслик» обязан быть!

У J-антенны противовесом считается четвертьволновой шлейф. У антенны RX3AKT – внешняя поверхность кабеля, из которого выполнен шлейф. Ну, а больше всего в ступор вводит Антенна Фукса, в которой автор всеми известными способами «отвязал» вибратор от источника питания.

Ещё более парадоксальная ситуация сложилась с GP. Казалось бы, всё понятно, вот вертикальный излучатель, а вот противовесы, собирающие токи смещения. Но любопытные радиолюбители, играя с моделировщиком, обнаружили (хотя это было известно и ранее, например, при описании работы квадрата в источниках доммановской эры), что соосно расположенные противовесы практически не излучают, следовательно, и не принимают!

Ну, лень нам изучать основы электротехники! Конденсатор – это устройство для накопления энергии! Не будем заморачиваться с тем, существует или нет ток смещения, отметим, что в этом устройстве по идее ни грамма энергии с одной обкладки через диэлектрик не переносится на другую обкладку. Не существует тока через конденсатор, существуют токи его заряда и разряда, которые текут на обкладку и с неё ПО ОДНОМУ и тому же проводу. И только для упрощения расчётов электрических цепей ток проводимости принимается равным по величине току смещения, «текущему» через конденсатор.

В предлагаемой модели тока эти нестыковки не возникают. Например:

Диполь со смещением точки запитки из центра

В короткую и длинную части вибратора из источника или из фидера втекают прямые (падающие) токовые волны. Достигнув концов, они отражаются и текут к точке питания, образуя в суперпозиции стоячие волны тока. Но в точку питания обратные (отраженные) волны приходят не одновременно. Поэтому величины стоячих волн тока на клеммах источника (фидера) в общем случае не равны и не совпадают по фазе. Следовательно, напряжение и ток на клеммах источника не синфазны, что является свойством реактивной нагрузки. Мера противодействия – гальваническая развязка вибратора от источника, линии питания.

GP

Та же картина, что и в диполе. Токи втекают в вибратор и противовесы. Стоячие волны тока образуют переменное электрическое поле между вибратором и противовесами. В случае неравенства их длин во входном сопротивлении появляется реактивность.

Полуволновой вибратор, питаемый с конца

Предположим, что питание вибратора осуществляется с помощью линии питания. Втекающий ток и отраженный от неподключённого конца вибратора образуют стоячую полуволну тока. Поскольку токи теряют часть энергии на излучение и преодоление активного сопротивления провода, ток в точке питания не равен нулю. В проводах фидера также образуются стоячие волны тока и напряжения. Поскольку вибратор излучает часть подведенной энергии, то энергия стоячих волн в проводах линии будет разной. В проводе линии, подключённом к вибратору, амплитуда тока стоячей волны будет меньше, а в неподключённом проводе линии будет больше. Для выравнивания токов в линии применяется два способа. Между антенной и линией ставится буферный накопитель энергии – резонатор в виде параллельного контура или четвертьволнового шлейфа. Второй способ – гальваническая развязка с помощью трансформатора. У Антенны Фукса применены оба способа.

Истекание тока с обеих клемм источника позволяет по-новому взглянуть на работу и самого источника. В любом проводе, подключённом к клемме, течёт ток. Если к «положительной» клемме, как правило, подключается один провод: антенна или центральная жила кабеля, то к другой подключён корпус радиостанции и провод заземления. Т.е. величины падающих волн токов в центральной жиле и оплётке кабеля в принципе не равны и следует принять меры по их выравниванию.

Как правило, колебательная система (КС) усилителя мощности радиостанции представляет собой параллельное включение индуктивности и емкости, концы которых подсоединены к соответствующим выходным клеммам. На каждом из них происходит сложение двух сил: электродвижущей силы, посылающего заряды в нагрузку, и силы притяжения зарядов на обкладках конденсатора. Эдс, конечно, сильнее. Но если не обеспечить приблизительное равенство величин исходящих токов с обоих концов контура, то количество зарядов на одной из обкладок вырастет, и сила их притяжения не позволит зарядам другой обкладки покинуть её. В этом случае КС выйдет из резонанса, а, в крайнем случае, откажется питать нагрузку. Интересный опыт описал Е.Кузнецов (RA 1AIT ) (6). Работая с Антенной Фукса мощностью до 5 Вт, он обнаружил, что при подключении антенны к роторным пластинам переменного конденсатора она переставала работать. При подключении же к статорным пластинам неоновая лампочка, поднесённая к корпусу конденсатора, ярко сияла. Т.е. емкости корпуса конденсатора было достаточно для размещения в ней количества зарядов равного количеству зарядов, ушедших в вибратор.

Понимая, что данная статья вызовет неоднозначную реакцию, закончу словами великого поэта: «О, сколько нам открытий чудных готовит просвещенья Дух. И опыт – сын ошибок трудных. И …»

Всем удачи. 73!

Литература.

    А.А.Гришаев. Металлы: нестационарные химические связи и два механизма переноса электричества