Наплавной монтаж металлических пролетных строений. Конструкция днищевых перекрытий


Конструкция днищевых перекрытий на судах зависит от двух обстоятельств: первое - суда могут иметь двойное дно и не иметь его; второе - суда могут быть построены по поперечной или продольной системам набора или по клеточной системе набора корпуса (некоторые морские суда).

Суда без двойного дна с поперечной системой набора . При этой системе набора поперечные связи размещают часто; расстояния между ними меньше, чем между продольными балками. Поперечные связи (шпангоуты) располагают по бортам и днищу корпуса. Если шпангоут верхними концами соединен поперечной балкой, идущей под палубой - бимсом, то образуется шпангоутная рамка. Расстояние между шпангоутными рамками (шпангоутами) называют шпацией. В зависимости от длины судна величина этих расстояний изменяется от 500 до 800 мм; наиболее часто встречаются шпации 550 и 600 мм (на морских и внутреннего плавания судах).

Шпангоутные рамки, расположенные по днищу, разделяют (по конструкции) на обыкновенные - холостые (на судах внутреннего плавания) и усиленные, называемые флорами; обыкновенные состоят из угловой стали или полособульба, приваренного к обшивке «на ребро», а усиленные - из приваренного вертикально к обшивке листа с полоской по верху (для жесткости), называемой обратной полосой.

В качестве продольных креплений по днищу устанавливают усиленные связи - днищевые стрингеры, а на судах внутреннего плавания - кильсоны. Средний днищевый стрингер, расположенный в диаметральной плоскости судна, называют вертикальным килем. Флоры при поперечной системе набора делают неразрезными и режут только при пересечении с вертикальным килем. Высота флора зависит от формы и класса судна; колеблется от 250 до 300 мм (на речных судах) и от 500 до 700 мм (на морских). Толщина листов стенок флоров бывает от 3 до 6-8 мм, а на крупных морских судах до 12-14 мм. Для облегчения массы набора в листах флоров на 2/3 высоты ее делают круглые или продолговатые овальные вырезы.

Параллельно вертикальному килю на расстоянии 1250-2250 мм (в зависимости от размеров и класса судна) устанавливают боковые днищевые стрингеры (кильсоны), которые, как правило, разрезают в местах пересечения с флорами. Верхний поясок днищевых стрингеров (выше флоров) делают неразрезным, а пояски флор разрезают и приваривают к пояскам днищевых стрингеров. Места пересечения листов днищевых стрингеров с флорами сваривают.

Днищевые стрингеры, пересекающиеся с поперечными, а флоры - с продольными переборками, разрезают и крепят кницами, представляющими собой угловые пластины, или уширенными поясками (рис. 14, а, б).

Рис. 14. Конструкций днища без двойного дна (поперечная система набора):
а - крепление набора к переборке с помощью книц, б - то же, с помощью поясков; 1 - поперечная переборка, 2 - днищевой стрингер, 3 - кница, 4 - вертикальный киль, 5 - сплошной флор, 6 - стойка флора, 7 - уширенный поясок

Суда без двойного дна с продольной системой набора . Такую систему набора применяют, главным образом, на морских танкерах, а танкеры внутреннего и смешанного плавания строят с двойным дном.

При этой системе набора по днищевой обшивке вдоль судна идут продольные балки, выполняемые из полособульбового профиля, приваренного «на ребро». Расстояния между ними устанавливают 350-500 мм (на судах внутреннего и смешанного плавания) и 500-800 мм (на морских) в зависимости от длины судна.

Флоры, обеспечивающие поперечную прочность, ставят через 1500-2500 мм, а на крупных судах через 3-5 шпаций (чаще через 4 шпации). Продольные балки пропускают через специальные отверстия во флоре у днищевой обшивки и сваривают со стенкой флора. Днищевые стрингеры (усиленные продольные связи) остаются на судне. На танкерах вместо ряда днищевых стрингеров устанавливают продольные переборки, препятствующие перемещению груза с одного на другой борт. Конструкция морского танкера без Двойного дна, набранного по продольной системе набора, изображена на рис. 15.


Рис. 15. Конструкция днища без двойного дна (продольная система набора):
1 - продольная переборка, 2 - вертикальный киль, 3 - сплошной флор, 4 - продольная днищевая балка, 5 - поперечная переборка

Днищевые перекрытия с двойным дном (поперечная система набора). Второе дно на судах делают протяженностью 0т форпиковой до ахтерпиковой переборки, иногда до носовой переборки машинного отсека.

В средней части между днищевой обшивкой и настилом второго дна ставят неразрезной вертикальный киль. Параллельно вертикальному килю устанавливают днищевые стрингеры (кильсоны) количество которых зависит от ширины судна; эти стрингеры делают разрезными на флорах.

Флоры бывают сплошные, сплошные с облегчающими вырезами (или бракетными) и состоят из шпангоутного угольника, приваренного к днищевой обшивке, и угольника, приваренного ко второму дну (перпендикулярно к настилу). Таким образом, они полками лежат навстречу друг другу.

У днищевых стрингеров флоры скрепляют друг с другом вертикальными полосами, называемыми бракетами. На грузовых судах сплошные флоры ставят через три бракетных флора (т. е. через 4 шпации), но не далее 3,6 м друг от друга. Если сухогрузное судно предназначено для перевозки в трюмах тяжелых грузов, сплошные флоры в трюмах устанавливают на каждом шпангоуте; то же делают в машинном или в носовом отсеках.

Вырезы во флорах и в боковых днищевых стрингерах делают овальной формы размерами в свету 600X400 мм (в средней части пластины флора и днищевого стрингера). Настил второго дна у борта может отгибаться вверх (рис. 16).


Рис. 16. Конструкция днища со вторым дном (поперечная система набора):
1 - поперечная переборка, 2 - вертикальный киль, 3 - водонепроницаемый флор, 4 - стойка флора, 5 - сплошной флор, 6 - бракетный флор, 7 - днищевой стрингер, в - настил второго дна, 9 - приподнятый крайний лист настила второго дна

Днищевые перекрытия со вторым дном (продольная система набора). Такие перекрытия применяют на современных сухогрузных морских, смешанного и внутреннего плавания судах.

В средней части судна вдоль корпуса устанавливают вертикальный киль. Днищевые стрингеры ставят так же, как и при поперечной системе набора, но реже; количество их зависит от ширины судна.

По днищу и под настилом второго дна устанавливают одну над другой днищевые продольные балки и продольные балки второго дна. На водонепроницаемых флорах, являющихся переборками междудонного пространства, балки разрезают и крепят к этим флорам кницами или бракетами; через сплошные флоры продольные балки пропускают в специальные вырезы, стенки балок приваривают к флорам. Расстояние между флорами принимают от 2,4-3,6 м (на морских судах). В пределах машинного отделения сплошные флоры устанавливают на каждом втором шпангоуте, т. е. через две Шпации. Конструкция днища со вторым дном при продольной системе набора изображена на рис. 17.


Рис. 17. Конструкция днища со вторым дном (продольная система набора):
1 - бортовая обшивка, 2 - поперечная переборка, 3 - шпангоут, 4 - стойка поперечной переборки, 5 - приподнятый крайний лист настила второго дна, 6 - бракета, 7 - продольные балки днища и второго дна, 8 - сплошной флор, 9 - днищевой стрингер, 10 - вертикальный киль

Ввиду экономической выгодности контейнерных перевозок продолжаются поиски новых, еще более рентабельных методов их организации. Один из них был найден в результате сопоставления грузовых перевозок в унифицированной таре по железной дороге, по шоссе и по морю. Так как транспортировка по воде дешевле, чем автодорожным или рельсовым транспортом, напрашивался вариант: строить плавучие контейнеры в форме прямоугольных барж и проектировать суда, на борту которых эти баржи могли бы транспортироваться морем. Идея такого судна была не нова, так как во время второй мировой войны, особенно в военно-морском флоте США, имелся ряд судов, которые перевозили таким образом десантные войска и имели на борту оборудование для подъема барж на борт и спуска их на воду. Такой способ перегрузки назвали «Float on - Float off». Выгодно продать дом в элитном районе Подмосковья. За последние годы появилось много таких судов. В зависимости от способа, которым баржи принимаются на борт, различают три основных конструктивных типа баржевозов: ЛЭШ, Сиби и БАКАТ. Первые суда типа ЛЭШ были построены в 1969-1970 гг. Вид такого судна, а также способ погрузки на него представлены на рисунке ниже.


Надстройки смещены далеко в нос; два машинных отделения размещены по обеим сторонам широкого трюма в корме. Расположение барж во время рейса можно видеть на рисунке b. В качестве перегрузочного средства служит передвижной козловой кран грузоподъемностью 5 МН. Грузоподъемность стандартной баржи типа ЛЭШ составляет 370 т, габаритные размеры 16,7X9,5X4,4 м. При разгрузке лихтеры поднимают из трюма с помощью козлового крана, перемещают к корме и там спускают на воду. Погрузка производится в обратном порядке. Суда типа ЛЭШ могут найти разнообразное применение. Они могут, в частности, перевозить 20-футовые контейнеры (рис. с)


Баржевозы типа «Сиби» строят главным образом в США; их баржи значительно больше и имеют грузоподъемность 850 т. Баржи располагают на нескольких палубах, оснащенных рельсами для их перемещения. В корме имеется лифт грузоподъемностью 19,6 МН, служащий для подъема и спуска барж. При погрузке лифт опускается так, чтобы в него могли войти две баржи. Затем лифт вместе с баржами поднимается до нужной палубы. Под баржи подводится поворотная тележка, на которой баржи по рельсам доставляются до места, где они закрепляются на время рейса. Баржевозы типа «Сиби» имеют дедвейт 38 410 т, в то время как суда типа ЛЭШ строятся в трех вариантах: дедвейтом 18 850, 26 500 и 43 517 т.



Баржевоз типа СИБИ

а - транспортировка лихтера к лифту. b - дальнейшая транспортировка на судне.

Третий тип баржевозов - суда БАКАТ дедвейтом примерно 25 тыс. т. Двухкорпусная конструкция судна позволяет баржам типа ЛЭШ заплывать под главную палубу между двумя корпусами, где они закрепляются. Небольшие баржи грузоподъемностью 140 т поднимают на палубу лифтами, как и на баржевозах типа «Сиби». Суда типа БАКАТ предназначены для транспортировки барж из небольших или речных портов к морским судам типа ЛЭШ, а также для перевозок в прибрежных районах или на небольших водоемах. Особой, пока еще не очень распространенной, оригинальной формой баржевоза является так называемое составное судно. Это очень большая баржа, которая с помощью особого замка и гидравлических клиньев соединена с машинным отделением, работающим как буксир-толкач. Экономическая выгода от использования составных судов состоит в низких расходах на постройку. Кроме того, баржа может оставаться в порту, в то время как энергетическая часть сразу уходит в море, следовательно, эксплуатационные расходы снижаются. С другой стороны, требуются соответствующие баржи и энергетические секции особой конструкции, а также очень хорошо организованное обслуживание в обоих портах.


Владельцы патента RU 2513368:

Изобретение относится к строительству морских судов и может применяться при аварийной посадке самолета.

Известна баржа, имеющая корпус с палубой (Н.В.Баранов. Конструкция корпуса морских судов. Том 1. - С.-Петербург, 1993, стр.14-21, 268).

Однако на эту баржу нельзя садиться неисправному во время полета самолету.

Техническим результатом изобретения является возможность посадки на баржу неисправному во время полета самолету.

Указанный технический результат достигается тем, что на палубе расположен негорючий мягкий материал, покрытый мягкими металлическими листами, прикрепленными к бортам корпуса.

На фиг.1 изображена баржа, вид сбоку, разрез.

На фиг.2 то же, вид сзади, разрез

Баржа имеет следующую конструкцию. Шпангоуты 1 скреплены стрингерами 2. К стрингерам 2 прикреплена обшивка 3. На стрингерах 2 расположен настил палубы 4. На палубе 4 расположен мягкий негорючий материал 5, например асбест или стекловолокно. Сверху материал 5 покрыт мягкими металлическими листами 6, например алюминиевыми. Металлические листы 6 прикреплены к бортам корпуса баржи. На листах 6 расположена солнечная батарея 7, соединенная с аккумулятором и осветительными приборами.

Баржа используется следующим образом. В океане вдоль авиалинии на расстоянии 100 км друг от друга расположены баржи предложенной конструкции. Баржи видны на воде, т.к. они постоянно освещены, получая электроэнергию от солнечной батареи 7 и аккумулятора. Когда идет дождь, то вода стекает с металлических листов, не попадая на материал 5. Во время полета при неисправности летчик сажает самолет на баржу. Металлические листы 6 и мягкий материал 5, сжимаясь, смягчают посадку самолета. Самолет при посадке вдавливает баржу в воду. Это дополнительно смягчает его посадку. Через некоторое время к барже подплывает катер и забирает из самолета экипаж и пассажиров. Затем буксир увозит баржу в док. После ремонта буксир увозит баржу в океан опять на авиалинию.

Использование баржи предложенной конструкции позволит получить следующий технико-экономический эффект. Так при неисправности во время полета над океаном самолет попадает в воду. Гибнут люди. Это невосполнимый ущерб государству. При использовании баржи предложенной конструкции можно избежать падения самолета на воду и гибели людей. Это предотвратит невосполнимый ущерб государству.

Баржа, имеющая корпус с палубой, отличающаяся тем, что на палубе расположен негорючий мягкий материал, покрытый мягкими металлическими листами, прикрепленными к бортам корпуса.

Похожие патенты:

Изобретение относится к оборудованию аэродромов, в частности к средствам обеспечения посадки летательных аппаратов в ограниченной видимости. Взлетно-посадочная полоса (ВПП) состоит из искусственного покрытия (1), вогнутого к середине участка с перепадом высот более 10 м, радио- и осветительного оборудования, двух имитаторов подвижных радиолокационных целей (3-1, 3-2).

Изобретение относится к области кораблестроения, преимущественно к оборудованию вертолётных площадок на судовой палубе. Ангар для палубного вертолёта содержит корпус и средства крепления к палубе судна. Ангар выполнен сдвижным, закрепляемым на вертолетной площадке после посадки вертолёта и закрепляемым на палубе вне площадки над зоной с корабельным вооружением перед взлётом вертолёта. Ангар может быть установлен на направляющих, закреплённых в подпалубном пространстве. Повышается эффективность использования территории палубы и улучшаются условия эксплуатации. 1 з.п. ф-лы, 1 ил.

Изобретение относится к подводному кораблестроению и может быть использовано преимущественно при строительстве атомных подводных лодок. Подводный авианосец содержит соединённые параллельно между собой три модуля, в том числе два двигательных модуля с гребными валами. Средний модуль выполнен авианесущим и содержит взлётную палубу и выполненный под ней ангар для самолётов. Передняя и задняя оконечность авианесущего модуля выполнены с закрывающимися отверстиями для взлёта и посадки. Авианесущий модуль может быть выполнен с возвышением относительно двигательных модулей. На взлетной палубе может быть выполнен по меньшей мере один люк, под которым установлен лифт. Достигается увеличение боевых возможностей подводной лодки. 5 з.п. ф-лы, 6 ил.

Изобретение относится к конструкции авианосцев, в частности к устройству взлетно-посадочных полос и площадок для размещения палубных самолетов. Предложен авианосец, выполненный с расположенными одна над другой двумя палубами: основной и дополнительной выдвижной. На основной открытой палубе находится взлетная полоса, вдоль которой располагается стоянка самолетов. На дополнительной выдвижной палубе находится посадочная полоса и площадка, на которой также может располагаться стоянка самолетов. Дополнительная выдвижная палуба может выдвигаться или вдвигаться в корпус авианосца в зависимости от обстановки. В задней части дополнительной выдвижной палубы установлена система стабилизации, выполненная в виде судов-понтонов, оснащенных двигательными установками с гребными винтами, и опор, связанных с дополнительной палубой и судами-понтонами. Технический результат заключается в повышении безопасности посадки самолетов, повышении маневренности авианосца и эффективности спасательных средств. 3 з.п. ф-лы, 4 ил.

Изобретение относится к судостроению и может быть использовано для погрузки и выгрузки гидросамолёта на судно. Судовой комплекс содержит балластную систему. Аппарель с закрылком установлена на двух наклонных направляющих, расположенных побортно. Аппарель содержит привод и устройство фиксации самолета-амфибии и выполнена выдвижной с тремя дорожками. Часть дорожек погружена в воду на безопасную глубину. Достигается возможность повышения эффективности работы комплекса по спуску-подъему самолета-амфибии и безопасной работы при эксплуатации. 2 з.п. ф-лы, 6 ил.

Изобретение относится к области кораблестроения, в частности к авианесущим кораблям и аэродромам морского базирования. Предложен авианосец, который состоит из одинаковых двухпалубных кораблей-модулей, каждая палуба имеет поворотные звенья, оборудованные грузоподъемными механизмами и соединительными межпалубными устройствами, нижнее поворотное звено расположено в передней части нижней палубы, верхнее - в задней части верхней палубы. Технический результат заключается в улучшении эксплуатационных и компоновочных характеристик авианосца. 9 ил.

Изобретение относится к области светотехники и предназначено для использования при освещении летного поля. Техническим результатом является увеличение срока службы, путем обеспечения эффективного рассеяния тепла, защиты от воздействия реактивной струи и упрощение технического обслуживания, сборки и регулировки. Устройство содержит корпус (11), выполненный с возможностью прикрепления к опоре (14), обеспечивающей фиксацию указанного корпуса в положении над поверхностью земли (15), и по меньшей мере одну световую головку (12, 13), содержащую по меньшей мере один светодиод (17). В корпусе (11) размещена электронная схема питания и возбуждения светодиода (17), содержащая первый теплоотвод (110), находящийся в тепловом контакте с указанной электронной схемой. Световая головка содержит второй теплоотвод (322, 422). Технический результат достигается за счет того, что световая головка (12, 13) выполнена в виде элемента, отдельного от корпуса (11), и содержит переднюю часть (122, 132), предназначенную для передачи испускаемого светодиодом света, и заднюю часть, содержащую заднюю поверхность (120, 130), на которой находится второй теплоотвод (322, 422). Световая головка (12, 13) прикреплена с возможностью присоединения к корпусу (11), причем в прикрепленном положении задняя поверхность (120, 130) расположена между передней частью (122, 132) и корпусом (11), а между корпусом (11) и световой головкой (12, 13) образован канал для прохождения текучей среды, через который проходит окружающий воздух так, что указанный второй теплоотвод обеспечивает рассеивание тепла в окружающем воздухе путем естественной конвекции. 2 н. и 21 з.п.ф-лы, 8 ил.

Изобретение относится к оборудованию для управления полетом воздушных судов. Предлагаемая система состоит из наземного (аэродромного) и самолетного (бортового) сегментов. Наземный сегмент включает в себя пульт задатчиков метеорологических характеристик и информационный блок, соединенный с Единой сетью электросвязи страны. На выходе последней образовано радиополе сотовых передатчиков, расположенных в зоне подхода к аэродрому. Самолетный сегмент включает в себя радиоприемник сотовой связи, пульт задатчиков паролей аэродромов, блок метеорологических характеристик, компьютер вычисления коррекции и штатный электромеханический барометрический высотомер. Система позволяет принять на борту и вывести на дисплей: идентификационный пароль (позывной) рабочего направления и магнитный курс ВПП аэродрома, атмосферное давление аэродрома, эшелон перехода, вертикальную и горизонтальную видимости, направление и скорость ветра на ВПП, коэффициент сцепления и состояние поверхности ВПП. Главной функцией системы является автоматическое приведение высоты полета к уровню стандартного атмосферного давления или к атмосферному давлению аэродрома. Технический результат изобретения состоит в повышении безопасности захода на посадку и уменьшении вероятности столкновения самолетов в воздухе путем обеспечения правильной (автоматической) коррекции показаний бортового барометрического высотомера. 2 з.п. ф-лы, 7 ил.

Изобретение касается использования судна, в частности баржи, для аварийной посадки самолета. На палубе баржи расположен мягкий негорючий материал, например асбест или стекловолокно. Сверху негорючий материал покрыт мягкими металлическими листами, например алюминиевыми. Металлические листы прикреплены к бортам корпуса. Технический результат заключается в расширении эксплуатационных возможностей баржи. 2 ил.

Самобытный тип волжской баржи формировался в течение второй половины XIX века и в свою очередь оказал значительное влияние на становление дела классификации судов в России, послужив стимулом для создания Русского Регистра.

Впервые требования к новому типу грузового судна были сформированы в 40-х годах ΧΙΧ века, когда в Волжском бассейне обобщался первый опыт активного внедрения механической тяги.

Буксирные пароходы, тауэры, кабестаны и конномашинные суда первоначально буксировали традиционные сплавные суда: барки, коломенки, гусяны, унжаки, подчалки, межеумки. Их общими характерными особенностями были: отсутствие палубы (грузовые помещения закрывались тесовой крышей, не участвовавшей в обеспечении общей прочности) и значительное сопротивление движению из-за формы корпуса, оптимизированной главным образом в расчёте на наиболее удобное размещение груза и плавание в условиях сплава. Соответственно отсутствовали поперечные связи в верхней части корпуса (бимсы). У многих судов, например у коломенок, носовая оконечность делалась шире, чем кормовая (т.е.в средней части присутствовала не цилиндрическая, а «расширяющаяся» вставка), подобно стволу дерева, который плывёт по течению комлем вперёд. В условиях сплава это обеспечивало устойчивость на курсе.

Подобная конструкция была оптимальна в условиях сплавного судоходства, когда судно шло вниз по течению, сплавляясь с помощью потесей и лота. Вверх же против течения судно шло под парусом, на вёслах, бечевой или взводом (завозом якорей).

Внедрение механической тяги позволило формировать караван из 10-15 судов, последовательно соединённых с буксирующим судном. Как следствие встал вопрос о снижении сопротивления судов и повышении их прочности, как продольной, так и поперечной, поскольку суда в караване, за исключением последнего (замыкающего) подвергались значительным растягивающим напряжениям. В результате корпус судна разрушался в течение одной-двух навигаций. Кроме того, логика снижения буксировочного сопротивления, уменьшения накладных расходов требовала формирования каравана из меньшего числа судов, большего водоизмещения.

Время требовало принципиально нового типа речного грузового судна. Им стала баржа.

В качестве прототипа были приняты наиболее современные суда той эпохи – клиперы. Теоретический чертёж и конструкция корпуса разрабатывались на основе чертежей клиперов «драгоценной» серии «Изумруд» и «Яхонт». Отметим, что классические клиперы «Эн Мак-Кейн» и «Рейнбоу» появились в 1844-1845 г.г., а отечественные баржи (первые 12 единиц) уже весной 1848 года. Приходится признать, что отечественные инженеры в ту пору были весьма хорошо осведомлены о технических новинках (в том числе и заокеанских) и умели не только их заимствовать, но и творчески переработав быстро внедрить в практику отечественного судостроения и судоходства.

У судов были оставлены почти те же, что и у клиперов обводы ватерлиний, изменено было лишь днище, которое вместо килевого было сделано плоским. На первых баржах практически в неизменном виде сохранялась клиперская форма штевней и форма кормы. Совершенные обводы корпуса позволили существенно снизить буксировочное сопротивление, что было весьма важным, учитывая малые мощности первых буксирных судов (как правило 10 -50 кВт, редко 80- 90 кВт). У более поздних барж (когда существенно возросла мощность буксирных судов) носовая часть часто стала делаться ложкообразной, а корма – санной. Это были достаточно крупные суда. Их длина лежала в пределах от 96 до 117 м.

Первоначально баржи предназначались для перевозки сухих грузов. Преимущественно генеральных и полумассовых (навалочных упакованных в мешки). Затем появились баржи пассажирские и наливные. В проектировании и строительстве барж принимали участие такие выдающиеся отечественные инженеры как Боярский А.К., Одинцов А.И., Шухов В.Г.

В конструкцию корпуса были введены бимсы, продольные бортовые связи – бархоуты. Практически все баржи несли парусное вооружение, хотя и не такое развитое, как у прототипа – клипера. На ранних баржах, обычно один прямой парус. Поздние баржи обычно несли 2 - 3 мачты, оснащённые гафельными парусами и стакселями. Высота мачт достигала 20 метров. Мачты делались заваливающимися.

Наличие парусов на буксируемом несамоходном судне в ту пору не было чем-то необычным. Морские буксируемые лихтеры также несли 2 -3, а иногда и 4 мачты с упрощённым парусным вооружением. Это позволяло решить ряд важных задач: снижался расход топлива на буксирном пароходе, повышалась управляемость, уменьшалась качка на волнении. При благоприятном ветре скорость увеличивалась на 25 %. Парусное вооружение сохранялось на баржах и лихтерах до 30-х годов ΧΧ столетия.

Но энергия ветра использовалась не только для движения. На многих баржах устанавливался ветряк (по типу ветряной мельницы) от которого работал насос осушительной системы.

Однако пожалуй самой интересной особенностью волжских барж был комплекс мер по обеспечению общей прочности. Причём он был единым, как для деревянных, так и для появившихся позже стальных корпусов.

Суть его заключалась в том, что кривая нагрузки в любом её варианте полностью соответствовала кривой распределения сил поддержания (строевой по шпангоутам). Т.е. эпюры нагрузки и сил поддержания были одинаковы по форме. В результате ни изгибающего момента, ни перерезывающих сил в корпусе не возникало. Для состояния порожнём, это достигалось соответствующим размещением связей корпуса, судовых устройств, оборудования, назначением размеров конструкций.

Для тех или иных вариантов загрузки это обеспечивалось соответствующим распределением грузов, что отражалось в грузовом плане. В ходе эксплуатации требования грузового плана соблюдались неукоснительно.

Несколько сложнее было обеспечить требуемое размещение груза на наливных баржах. Однако и здесь отечественными инженерами были найдены весьма оригинальные решения.

На деревянных баржах, где обеспечить непроницаемость переборок и необходимое распределение груза по длине судна было затруднительно, предотвращение обвисания оконечностей достигалось с помощью металлических шпренгелей крепившихся за кильсоны. На стальных баржах корпус делился на большое число отсеков лёгкими переборками. Число таких отсеков достигало 46. Для сравнения: число отсеков на наливных судах спроектированных в соответствии с Правилами Германского Ллойда не превышало 6. Наличие большого числа отсеков позволяло осуществить распределение груза по длине в строгом соответствии распределению сил поддержания.

Отсутствие изгибающих моментов и перерезывающих сил позволяло минимизировать размеры связей, как обшивки, так и продольных и поперечных балок набора, что привело к существенному облегчению корпуса, росту коэффициента утилизации водоизмещения по грузоподъёмности.

Для сравнения размеры связей применительно к стальным судам.

  • Толщина обшивки волжской баржи……………………………...4,76 -6,35 мм
  • немецкой………………………………………................................7 – 10 мм
  • Толщина палубы волжской баржи…………………………….....3,17 – 6,35 мм
  • немецкой …………………………………………..........................5,5- 7 мм
  • Шпация на волжской барже……………………………………...609 мм
  • немецкой…………………………………………….......................500 мм
  • Толщина переборки на волжской барже……………………….3,17 – 4,76 мм
  • немецкой………………………………….…..................................4 -5 мм
  • Размеры поперечных балок (шпангоутов и бимсов):
  • волжских барж. …..………………..................................................76 х 51 х 6,3 мм
  • немецких…………………………....................................................85 х 65 х 8 мм

Отметим, что размеры волжских барж, и стальных и деревянных постоянно возрастали, имея ограничением только габариты судового хода. Так средняя грузоподъёмность деревянных барж составляла 1600 – 2000 т, однако строились и суда грузоподъёмностью до 6500 тонн. Размерения этих гигантов составляли: длина 160 м, ширина 19,2 м, высота борта 5 м.

Грузоподъёмность стальных барж составляла 3900 – 6000 т. Наиболее крупные имели грузоподъёмность до 10300 т, при длине 160,3 м, ширине 22,04 м высоте борта 3,81 м и осадке до 3,55 м.

В этих условиях ни Германский Ллойд, ни Британский Ллойд не имели возможности классифицировать подобные суда. Сказывалось отсутствие опыта проектирования, постройки и эксплуатации подобных судов, что только и могло послужить основой для разработки нового раздела правил классификации.

В России же этот необходимый опыт был уже накоплен техническими комиссиями страховых обществ. Обобщение же этого опыта стало основой при создании в 1913 году Русского Регистра. Таким образом волжские баржи это не только оригинальный тип судна, но и ярчайшая страница истории отечественного и мирового судостроения, свидетельства таланта отечественных инженеров, отражение самобытной научной школы, этап в развитии водного транспорта.

Библиография.

1. Истомина Э.Г. Водный транспорт России в дореформенный период. М. Наука 1991 г. 264 стр.

2. Одинцов А.И. Перевозка нефтяных продуктов по рекам Волжского бассейна. Труды съезда русских деятелей по водяным путям 1910 г. С.П. б. Паровая скоропечатня М.М. Гутзаца. 1910 г.

3.Тюрин И.В. "О некоторых недостатках современной постройки деревянных баржей". Труды съезда судовых деятелей.-СПб.: Типография И.Усманова, 1904 г.

формирование образа современной баржи, баржа, буксир, клиперы, буксирные суда

Страница 11 из 12

Этот способ монтажа предполагает сборку металлического пролетного строения (или его секции) на берегу, после чего на плавучих опорах оно доставляется в пролет и устанавливается на опоры.

Технологию монтажа составляют следующие работы :

  • сборка пролетного строения на берегу последовательным или параллельным (секционным) способами;
  • выкатка пролетного строения по пирсам к реке;
  • погрузка пролетного строения на плавучие опоры, предварительно заведенные под пролетное строение, с подклинкой на опорных клетках из деревянных брусьев;
  • подготовка трассы (дноуглубление, провешивание, размещение якорей);
  • транспортировка плавсистемы к месту установки пролетного строения на опоры, заведение плавсистемы в пролет;
  • опускание пролетного строения на опорные части.

Метод целесообразно использовать :

  • на строительстве многопролетных мостов, когда монтажные работы многократно повторяются, а стоимость затрат на выкаточные пирсы и плавсистемы окупаются;
  • при достаточной глубине реки, сравнительно небольшой скорости течения и продолжительном теплом времени года.

Технология наплавного монтажа металлических пролетных строений позволяет существенно сократить сроки строительства за счет параллельного ведения работ по сооружению опор и монтажу пролетных строений. Однако требуется выполнять большой объем работ по сооружению пирсов, плавучих опор, арендовать мощные буксиры и т. д.

Сборка пролетного строения осуществляется на берегу вдоль реки или на насыпи подхода по оси моста. Для сборки удобно использовать козловые краны, обслуживающие сборочные площадки.

Плашкоуты плавучих опор чаще всего монтируют на берегу (на клетках из брусьев) из понтонов КС (рис. 6.67), а надстройку плавучих опор - из элементов МИК-С и МИК-П. Ростверки опор надстроек опираются на понтоны через балочные клетки, чем достигается равномерное распределение нагрузки от веса пролетного строения на необходимую площадь плашкоута.

Рис. 6.67 - Понтон КС

Плашкоут спускают в реку по наклонным путям (слипам). На плашкоуте размещается надстройка. Надстройку монтируют крупными блоками с помощью плавкрана. Сверху надстройки устраивают опорные клетки из деревянных брусьев высотой 0,6- 0,7 м. Клетки позволяют учитывать изменения высотного положения опоры в связи с колебаниями уровня воды к моменту погрузки. Высоту плавучей опоры (рис. 6.68) определяют исходя из отметки РУВ (рабочего уровня воды в момент перевозки пролетного строения) и проектной отметки низа пролетного строения.

Рис. 6.68 - Перевозка пролетного строения на плаву: 1 - опорная клетка; 2 - надстройка; 3 - фермы усиления плашкоута; 4 - нижний балочный ростверк; 5 - расчалка с фаркопфом для натяжения

Плавучая опора оснащается насосами для балластировки и разбалластировки понтонов, компрессорами, ручными или приводными лебедками и адмиралтейскими якорями с тросами.

Погрузка пролетного строения на плавучие опоры осуществляется при всплытии плавсистемы с помощью сброса водного балласта из понтонов. Для перемещения пролетного строения на большие расстояния чаще используют поперечную передвижку по выкаточным пирсам (рис. 6.69). В этом случае, как правило, устраивается дноуглубление («ковш») между пирсами, чтобы не сооружать дорогостоящие пирсы большой длины (которые может разрушить ледоход). Отметка верха накаточных путей пирсов соответствует проектной отметке низа пролетного строения.

Рис. 6.69 - Подготовка пролетного строения к перевозке

Чтобы уменьшить расходы на выкаточные пирсы, для которых нужны свайные фундаменты, поперечную передвижку можно осуществлять по низким пирсам. Для этого требуются фермо-подъемники по концам пирсов. Их сооружают в виде башен или стоек, оснащенных гидравлическими подъемниками или полиспастами для подъема пролетного строения и погрузки его на плавучие опоры.

Плавучую систему транспортируют к мосту буксиры большой мощности. В пролет плавсистема вводится с низовой стороны (чтобы избежать навала на опоры) на тросах (с помощью лебедок, установленных на плавучих опорах). Не доходя 50-100 м. до оси моста, закрепление плавсистемы переключают с буксиров на лебедки, размещенные на плашкоуте. Для этого концы тросов с лебедок закрепляют к постоянным опорам ошлаговкой (путем трехкратного обматывания троса с креплением к нему проушин, куда и заводят концы тросов от лебедок плавучей опоры) и якорям (адмиралтейским или якорям-присосам) в русле реки и на берегу (рис. 6.70). Минимальное расстояние от якоря до плавучей опоры принимается не менее 10-15 глубин воды в реке. Это обеспечит нормальную работу якоря. После заводки пролетного строения в пролет и установки на опорные части или временные клетки плашкоуты балластируют водным балластом.

Рис. 6.70 - Схемы транспортирования и заводки в пролет пролетного строения на плавучих опорах: а - буксирами; б - лебедками; 1 - пеленажный катер; 2 - пролетное строение; 3 - плавучая опора; 4 - главный буксир; 5 - вспомогательный буксир; 6 - якорь; 7 - бакен; 8 - направление движения плавсистемы; 9 - течение реки; 10 - опора моста; 11 - ось моста

После этого плавучие опоры выводят из-под пролетного строения и транспортируют к месту отстоя.

Погрузка пролетного строения может осуществляться также продольной передвижкой с применением плавучих опор в соответствии со схемой на (рис. 6.71).

Рис. 6.71 - Схемы продольной надвижки пролетного строения: a - с временными опорами, устраиваемыми по оси моста; б - без устройства временных опор; 1 - плавучая опора; 2 - опора моста

Надвижка осуществляют с временными опорами в пролете или без них .

Первый способ целесообразно применять при сооружении многопролетных мостов, когда пролетное строение после выкатки в первый пролет грузится на 2 плавопоры и транспортируется для установки в других пролетах.

Второй способ применяется для сооружения однопролетного моста, когда по тем или иным причинам устройство подмостей нежелательно.

Балластировка плавсистемы производится для высотного регулирования ее положения при погрузке пролетного строения на плавучие опоры и установке его на опорные части.

Количество водного балласта в понтонах плашкоута плавучей опоры G балл складывается из следующих частей:

Q nc - вес перевозимого пролетного строения;

L, В - длина и ширина плашкоута;

γ - удельный вес воды;

Здесь (рис. 6.72):

Δ 1 - деформация пролетного строения под собственным весом;

Δ 2 - деформация пирсов;

Δ 3 - деформация плавучих опор;

Δ 4 - зазор между пролетным строением и пирсом, необходимый для съема пролетного строения; ориентировочно Δ 4 = 0,15 м;

G рег - количество водного балласта для учета колебаний воды в реке при перевозке (h рег = 0,15 м), определяемая по формуле

G ocm = LBh ocm - остаточный (неустранимый) водный балласт;

h ост = 0.1 м.

Рис. 6.72 - Схема к расчету балластировки плавсистемы

На плавсистему действуют :

1) вертикальные силы :

От веса элементов плавсистем, включая водный балласт (ΣG i);

Выталкивающая сила, равная весу воды, вытесненной плашкоутом (Vγ 1), где

V - объем вытесненной воды:

t - осадка плашкоута.

2) горизонтальные силы :

От действия ветровых нагрузок (ΣW i);

От сил сопротивления воды смещению (T).

Поскольку система находится в равновесии, то опрокидывающий момент должен быть равен восстанавливающему:

откуда можно определить

Поскольку v , γ в неравны 0, то критическим случаем будет условие р - u = 0, т. е. условие остойчивости приобретает вид

где р, а - соответственно метацентрический радиус и ордината центра тяжести плавсистемы от центра водоизмещения (расчетная схема изображена на рис. 6.73).

Рис. 6.73 - Схема к расчету остойчивости плавсистемы: 1, 2, 3 - соответственно центр тяжести плавсистемы, центр водоизмещения, метацентр

Отсюда следует целесообразность понижения положения центра тяжести плавсистемы, достигаемого, в частности, водным балластом в понтонах плашкоута. Однако он увеличивает осадку плавсистемы, а высота сухого борта уменьшается.

Величина осадки плавсистемы приближенно определяется по выражению

где L, В - длина и ширина плашкоута соответственно;

ΣG i , γ в - соответственно нагрузка на плавучую опору, включая балласт, и удельный вес воды.

Сухой борт при высоте понтона H можно определить по формуле

где φ - угол наклонения плавсистемы.

При этом величина сухого борта должна быть больше или равна 0,2 м. для понтонов КС и больше или равна 0,5 м. для барж.

Понтоны загружают водным балластом, закачивая насосами воду в люки балластируемых понтонов или снижая давление сжатого воздуха в понтонах с донными отверстиями (рис. 6.74).

Рис. 6.74 - Варианты балластировки плавсистемы

В качестве примера ниже приведены некоторые данные по наплавному монтажу пролетного строения автодорожного моста через реку Иртыш в городе Ханты-Мансийске, реализованному Мостоетроем-11 в 2004 г. Проект моста, построенного по схеме 370 + 94,5 + 136,5 + 231 + 136,5 + 94,5 + 570 + 49,0 габаритом Г - 11,5 + 21,5 м, выполнен ОАО «Трансмост» (Санкт-Петербург). Технология строительства и проект специальных вспомогательных сооружений и устройств разработаны ЗАО «Институт Гип-ростроймост - Санкт-Петербург». Главный пролет длиной 231 м. с ездой понизу представляет собой неразрезную решетчатую арку с гибкой затяжкой.

После сборки арочной секции длиной 304,5 м. и массой 3600 т. на стапеле ее погрузили на плавсредства и доставили в пролет. Собранную на стапеле конструкцию для погрузки на баржи передвигали по пирсам на 71 м. с помощью двух гидроцилиндров (грузоподъемность каждого - 300 т, ход поршня - 2,95 м). При рабочем ходе гидроцилиндры упирались в упорную балку, упирающуюся, в свою очередь, в пластины между балками пирсов, приваренные с шагом 2,3 м. Передняя часть упорной балки фиксировалась в отверстиях балок пирсов. При обратном ходе поршня упорная балка подтягивалась гидроцилиндрами для следующего рабочего хода, а язычок упора автоматически защелкивался после прохода очередной пластины и служил упором при следующем рабочем ходе.

Передвигаемая конструкция опиралась на мощные ползуны, передвигаемые по уложенным на балках пирсов карточкам скольжения, покрытым дакленом.

Перевозка арочной секции проводилась летом 2003 г. на четырех баржах водоизмещением 3000 т. каждая (рис. 6.75). Размеры одной баржк - 16,5 × 85,0 × 3,3 м. Нагрузка на баржу составляла 2150 т. и включала нагрузку от веса пролетного строения (1150 т), обстройки баржи (400 т), регулировочного и остаточного водного балласта (600 т). Обстройка баржи выполнялась из металлических рамных опор. Каждая баржа была оснащена насосами производительностью до 250 м 3 /ч, электролебедками грузоподъемностью 5 т, кнехтами, киповыми планками, полиспастными системами.

Рис. 6.75 - Перевозка на баржах арочного пролетного строения

Учитывая большую высоту арок (61 м) и, как следствие, значительную парусность, а также высокую скорость течения воды в реке (до 2 м/с), потребовалось тяговое усилие при транспортировании плавсистемы величиной 70 тс при перевозке и 200 тс во время вынужденной стоянки (при скорости ветра 10 м/с). Это вызвало необходимость в мощных буксирах, полиспастах, якорях-присосах массой до 45 т. Для перевозки арочной секции было использовано 8 буксиров: 4 мощностью до 2400 л. с. и 4 мощностью до 1200 л. с.

Арочную секцию выводили на ось моста против течения, вначале плавсистема спускали вниз по течению на расстояние 400 м. ниже оси перехода, после чего буксиры повели ее вверх против течения. Не доходя до оси моста 50 м, рабочие буксиры прекратили движение и ограничились удерживанием плавсистемы против течения, а вспомогательные буксиры мощностью по 150 л. с. приступили к подаче канатов на плавучие рымы.

После заведения тросов, идущих от барж к якорям-присосам и к ошлаговке опор, баржи с помощью закрепленных на них лебедок завели арочную секцию на ось моста и раскрепили плавсистему лебедками, затем производилась балластировка барж до опускания арки на опоры моста и опирания секции пролетного строения на временные опорные части.

Далее демонтировали такелаж, баржи снялись с якорей, выбрали троса лебедок. Баржи буксирами вывели из-под пролетного строения. Продолжительность работ от перегрузки арочной секции с пирсов на баржи, транспортировки и до установки на постоянные опоры заняла 22 ч.