Нестандартные методы решения иррациональных неравенств и уравнений. Нестандартные методы решения уравнений и неравенств



Нестандартные способы решения квадратных уравнений

учащаяся 9 а класса

Руководитель работы:

Фирсова Дарья Евгеньевна

учитель математики


Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решать три-четыре задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.

У.У. Сойер (английский математик XX века)


Цель работы

Изучить все существующие способы решения квадратного уравнения. Научиться использовать эти способы.

Задачи

  • Понять, что называется квадратным уравнением.
  • Узнать какие виды квадратных уравнений существуют.
  • Найти информацию о способах решения квадратного уравнения и изучить её .

Актуальность темы: Изучением квадратных уравнений люди занимались еще с древних веков. Мне захотелось узнать историю развития квадратных уравнений.

В школьных учебниках дана не полная информация о квадратных уравнениях и способах их решения.

Объект: Квадратные уравнения.

Предмет: Способы решения данных уравнений.

Методы исследования: аналитический.

Гипотеза – если я при исследовании данной темы смогу реализовать постановленные мною цель и задачи, то соответственно выйду и на реализацию предпрофильной подготовки в области математического образования.


Методы исследования:

  • Работа с учебной и научно-популярной литературой.
  • Наблюдение, сравнение, анализ.
  • Решение задач.

Ожидаемые результаты: В ходе изучения данной работы, я реально смогу оценить свой интеллектуальный потенциал и соответственно в будущем определиться с профилем обучения, создать проектный продукт по исследуемой теме в форме компьютерной презентации, изучение данного вопроса позволит мне компенсировать недостаточность в знаниях по обозначенной теме.

Считаю свою работу перспективной, так как в дальнейшем этим материалом могут воспользоваться и ученики, для повышения математической грамотности, и учителя на факультативных занятиях


Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ёщё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера , а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводя только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.


Как составлял и решал Диофант

квадратные уравнения

УРАВНЕНИЕ:

«Найти два числа, зная, что их сумма равна 20, а произведение 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, т.к. если бы они равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10+X , другое же меньше, т.е. 10-X .

Разность между ними 2 Х

Отсюда Х=2 . Одно из искомых чисел равно 12, другое 8. Решение Х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.


0 Одна из задач знаменитого индийского математика XІІ века Бхаскары Обезьянок резвых стая Всласть поевши, развлекалась. Их в квадрате часть восьмая На поляне забавлялась. А двенадцать по лианам… Стали прыгать повисая… Сколько было обезьянок Ты скажи мне, в этой стае?. Соответствующее задачи уравнение: Баскара пишет под видом: Дополнил левую часть до квадрата," width="640"

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются и в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта, изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax ² +bx=c, a0

Одна из задач знаменитого индийского математика XІІ века Бхаскары

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать повисая…

Сколько было обезьянок

Ты скажи мне, в этой стае?.

Соответствующее задачи уравнение:

Баскара пишет под видом:

Дополнил левую часть до квадрата,


Квадратные уравнения в Древней Азии

х 2 +10 х = 39

Вот как решал это уравнение среднеазиатский ученый ал-Хорезми:

Он писал: "Правило таково:

раздвои число корней, х=2х ·5

получите в этой задаче пять, 5

умножь на это равное ему, будет двадцать пять, 5·5=25

прибавь это к тридцати девяти, 25+39

будет шестьдесят четыре, 64

извлеки из этого корень, будет восемь, 8

и вычти из этого половину числа корней, т.е.пять, 8-5

останется 3

это будет корень квадрата, который ты искал."

А второй корень? Второй корень не находили, так как отрицательные числа не были известны.


Квадратные уравнения в Европе XIII-XVII вв.

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х2+вх+с=0 , было сформулировано в Европе лишь в 1544 г. Штифелем.

Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. итальянским математиком

Леонардом Фибоначчи.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Лишь в 17 в. благодаря трудам Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид


О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если B+D, умноженное на А-А, равно BD, то А равно В и равно D».

Чтобы понять Виета, следует помнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же B,D- кэффициенты при неизвестном.

На языке современной алгебры вышеприведенная формулировка Виета означает :

Если приведенное квадратное уравнение x 2 +px+q=0 имеет действительные корни, то их сумма равна -p , а произведение равно q , то есть x 1 + x 2 = -p , x 1 x 2 = q

(сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).


  • Разложение левой части уравнения на множители
  • Теорема Виета
  • Применение свойств коэффициентов квадратного уравнения
  • Решение квадратных уравнений способом «переброски» старшего коэффициента
  • Метод выделения полного квадрата
  • Графический способ решения квадратных уравнений
  • Решение квадратных уравнений с помощью циркуля и линейки
  • Решение квадратных уравнений с помощью номограммы
  • Геометрический способ решения квадратных уравнений


Метод разложения на множители

привести квадратное уравнение общего вида к виду:

А(х)·В(х)=0,

где А(х) и В(х) – многочлены относительно х.

Цель:

Способы:

  • Вынесение общего множителя за скобки;
  • Использование формул сокращенного умножения;
  • Способ группировки.

Пример:

: х 2 + 10х – 24 = 0

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х(х + 12) – 2(х + 12) = = (х + 12)(х – 2);

(х + 12)(х – 2) = 0;

х + 12 = 0 или х – 2 = 0;

х 1 = -12 х 2 = 2 ;

Числа – 12 и 2 являются корнями данного уравнения.

Ответ: х 1 = -12 ; х 2 = 2.


Решение уравнений с помощью теоремы Виета

x 1 и х 2 – корни уравнения

Например :

Х 2 + 3Х – 10 = 0

Х 1 ·Х 2 = – 10, значит корни имеют разные

знаки

Х 1 + Х 2 = – 3, значит больший по модулю

корень - отрицательный

Подбором находим корни: Х 1 = – 5, Х 2 = 2


Свойства коэффициентов квадратного уравнения

Пусть дано квадратное уравнение ах 2 + bх + с = 0

Если а + b + с = 0 (т.е. сумма коэффициентов

уравнения равна нулю), то х 1 = 1 , х 2 = c/а

Если а - b + с = 0 , или b = а + с , то х 1 = – 1 , х 2 = – с/а .

Пример :

137х 2 + 20х 157 = 0.

a = 137, b = 20, c = -157.

a + b+ c = 137 + 20 157 =0.

x 1 = 1,

Ответ: 1;


0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3." width="640"

Решение уравнений способом «переброски»

Корни квадратных уравнений ax 2 + bx + c = 0 и y 2 + by + ac = 0 связаны соотношением : х = y/а .

Рассмотрим квадратное уравнение ax ² + bx + c = 0 , где a ≠ 0. Умножая обе его части на а , получаем уравнение а²х² + аbх + ас = 0. Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению у² + bу + ас = 0 , равносильного данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получаем х 1 = y 1 /a и х 2 = y 2 /a .

Решите уравнение: 2 - 11х +15 = 0.

Перебросим коэффициент 2 к свободному члену

у 2 - 11у +30= 0. D0, по теореме, обратной теореме Виета, получаем корни: 5;6, далее возвращаемся к корням исходного уравнения: 2,5; 3.


Метод выделения полного квадрата

х 2 + 6х – 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2· х ·3

В полученном выражении первое слагаемое – квадрат числа х , а второе – удвоенное произведение х на 3 , поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2· х ·3 + 3 2 = (х + 3) 2

Преобразуем теперь левую часть уравнения х 2 + 6х – 7 = 0, прибавляя к ней и вычитая 3 2 , имеем:

х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 =

= (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0 , т.е. (х + 3) 2 = 16 .

Следовательно, х + 3 - 4 = 0 или х + 3 + 4 = 0

х 1 = 1 х 2 = -7

Ответ: -7; 1.


Графический способ решения квадратного уравнения

Не используя формул квадратное уравнение можно решить графическим

способом. Решим уравнение

Для этого построим два графика:

Абсциссы точек пересечения графиков и будет корнями уравнения.

Если графики пересекаются в двух точках, то уравнение имеет два корня.

Если графики пересекаются в одной точке, то уравнение имеет один корень.

Если графики не пересекаются, то уравнение корней не имеет.

Ответ:


Решение квадратных уравнений с помощью

циркуля и линейки

1. Выберем систему координат.

2. Построим точки S (-b/ 2 а; а+с/ 2 а) – центр окружности и А( 0; 1 ) .

3. Проведем окружность с радиусом SA .

Абсциссы точек пересечения окружности с осью Ох являются корнями данного квадратного уравнения.

x 1

x 2


Решение квадратных уравнений с помощью номограммы

Это старый и незаслуженно забытый способ решения квадратных уравнений, помещенный на с.83 «Четырехзначные математические таблицы» Брадис В.М.

Для уравнения

номограмма дает корни

Таблица XXII. Номограмма для решения уравнения

Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения.


Геометрический способ решения квадратных уравнений

Пример, ставший знаменитым, из «Алгебры» ал - Хорезми: х 2 + 10х = 39 . В оригинале эта задача формулируется следующим образом: «Квадрат и десять корней равны 39».

S = x 2 + 10 x + 25 2 + 10 х = 39 )

S = 39 + 25 = 64 , откуда следует,

что сторона квадрата АВСD ,

т.е. отрезок АВ = 8 .

х = 8 - 2,5 - 2,5 = 3


На основании опроса установлено, что:

  • Наиболее сложными оказались следующие способы:

Разложение левой части уравнения на множители,

Метод выделения полного квадрата.

  • Рациональные методы решения:

Решение квадратных уравнений по формуле;

Решение уравнений с использованием теоремы Виета

  • Практического применения не имеет

Геометрический способ решения квадратных уравнений.

  • Никогда раньше не слышали о способах:

Применение свойств коэффициентов квадратного уравнения;

С помощью номограммы;

Решение квадратных уравнений с помощью циркуля и линейки;

Способ «переброски» (этот способ вызвал интерес у учеников).


Заключение

  • данные приёмы решения заслуживают внимания, поскольку они не все отражены в школьных учебниках математики;
  • овладение данными приёмами поможет учащимся экономить время и эффективно решать уравнения;
  • потребность в быстром решении обусловлена применением тестовой системы вступительных экзаменов;

СПАСИБО ЗА ВНИМАНИЕ!

«Нестандартные методы решения уравнений»

Кубанова Ольга Николаевна, учитель математики,

МБОУ «Плесецкая средняя школа»

« Процесс решения уравнения -

есть просто акт приведения его к более простой форме.

Но в некоторых формах его нелегко прочесть.

Решение его аналогично переводу

незнакомой фразы на понятный нам язык»

Для решения большинства уравнений, встречающихся на экзаменах, достаточно владеть школьным курсом математики, но при этом необходимо уметь их решать не только с помощью стандартных приёмов, предназначенных для вполне определённых типов уравнений, но и теми «нестандартными» методами, о которых я хочу рассказать.

Суть этих методов – реализовать «иной взгляд» на задачу, что позволяет, не выходя за рамки школьной программы, существенно упростить решение некоторых задач, то есть мы будем применять хорошо известные утверждения, но в ситуациях, где ими пользуются сравнительно редко.

Наряду с основной задачей обучения математике – обеспечением прочного и сознательного овладения учащимися системой математических знаний и умений, нестандартные методы предусматривают формирование устойчивого интереса к предмету, выявление и развитие математических способностей у детей, а также повышение качества обучения математике.

Я остановлюсь на методе, где для решения уравнений используются свойства функций, входящих в уравнение.

    Исследование области определений и области значений функций:

Заметим, что и и

Поэтому равенство невозможно.

Ответ: нет корней.

    Свойства монотонности функций:

Это уравнение можно решить стандартным способом, а можно проще. В левой части уравнения – возрастающая функция, а в правой – убывающая. Следовательно, данное уравнение не может иметь более одного корня. Число 1 – корень уравнения, что можно проверить подстановкой.

Возводить в пятую степень представляется бесперспективным. Пусть , тогда . Рассмотрим функции: и . Эти функции взаимно обратные, возрастает, то равносильно уравнению .

Корень один, т.к. слева – возрастающая функция, справа – убывающая функция.

    Использование « неотрицательности» функций:

.

Все слагаемые левой части неотрицательны, следовательно равенство возможно, только если каждое из слагаемых равно нулю.

Эти два равенства противоречат друг другу. Система не имеет решений.

Ответ: решений нет.

Чтобы использовать эти методы для решения уравнений, необходимо хорошо знать теоретический материал. Используя эти методы, экономится время, что позволяет решить больше заданий. А это немало важно при написании контрольных работ и сдаче ЕГЭ.

Свойства функций:

Т-1:

    Использование суперпозиций функций:

Т -2:

    «Неотрицательность» функций.

Свойства функций:

    Область определения и область значения квадратного корня.

    Свойства монотонности функции:

Т-1: Пусть у=f (х)- функция, возрастающая на промежутке L , а у=g (x )- функция, убывающая на этом же промежутке L . Тогда уравнение f (x )=g (x ) имеет на промежутке L не более одного корня.

    Использование суперпозиций функций:

Т -2: Если функции f (x ) и g (x ) взаимно обратны и функция f (x ) возрастает, то уравнение f (x )=g (x ) и уравнение f (x )=x равносильны.

    «Неотрицательность» функций.

Свойства функций:

    Область определения и область значения квадратного корня.

    Свойства монотонности функции:

Т-1: Пусть у=f (х)- функция, возрастающая на промежутке L , а у=g (x )- функция, убывающая на этом же промежутке L . Тогда уравнение f (x )=g (x ) имеет на промежутке L не более одного корня.

    Использование суперпозиций функций:

Т -2: Если функции f (x ) и g (x ) взаимно обратны и функция f (x ) возрастает, то уравнение f (x )=g (x ) и уравнение f (x )=x равносильны.

    «Неотрицательность» функций.

Русский филолог Дмитрий Николаевич Ушаков в своём толковом словаре даёт такое определение понятия «метод» - путь, способ, прием теоретического исследования или практического осуществления чего-нибудь (Д. Н. Ушаков, 2000).

Каковы же методы обучения решению задач по математике, которые мы считаем на данный момент нестандартными? Универсального рецепта, к сожалению, никто не придумал, учитывая уникальность данных задач. Некоторые учителя натаскивают в шаблонных упражнениях. Происходит это следующим образом: учитель показывает способ решения, а затем ученик повторяет это при решении задач многократно. При этом убивается интерес учащихся к математике, что, по меньшей мере, печально.

В математике нет каких-либо общих правил, позволяющих решить любую нестандартную задачу, так как такие задачи в какой-то степени неповторимы. Нестандартная задача в большинстве случаев воспринимается как «вызов интеллекту, и порождает потребность реализовать себя в преодолении препятствия, в развитии творческих способностей» .

Рассмотрим, несколько методов решения нестандартных задач:

  • · алгебраический;
  • · арифметический;
  • · метод перебора;
  • · метод рассуждения;
  • · практический;
  • · метод предположения.

Алгебраический метод решения задач развивает творческие способности, способность к обобщению, формирует абстрактное мышление и обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время.

Для того чтобы решить задачу алгебраическим методом необходимо:

  • · провести разбор задачи с целью выбора основного неизвестного и выявления зависимости между величинами, а также выражения этих зависимостей на математическом языке в форме двух алгебраических выражений;
  • · найти основание для соединения этих выражений знаком «=» и составить уравнение;
  • · найти решения полученного уравнения, организовать проверку решения уравнения.

Все эти этапы решения задачи логически связаны между собой. Например, о поисках основания для соединения двух алгебраических выражений знаком равенства мы упоминаем как об особом этапе, но ясно, что на предыдущем этапе указанные выражения образуются не произвольно, а с учётом возможности соединить их знаком «=».

Как выявление зависимостей между величинами, так и перевод этих зависимостей на математический язык требует напряжённой аналитико-синтетической мыслительной деятельности. Успех в этой деятельности зависит, в частности от того, знают ли учащиеся, в каких отношениях вообще могут находиться эти величины, и понимают ли они реальный смысл этих отношений (например, отношений, выраженных терминами «позже на…», «старше в…раз» и т.п.). Далее требуется понимание, каким именно математическим действием или, свойством действия или какой связью (зависимостью) между компонентами и результатом действия может быть описано то или иное конкретное отношение.

Приведём пример решения нестандартной задачи алгебраическим методом.

Задача. Рыбак поймал рыбу. Когда у него спросили: «Какова её масса?», он ответил: «Масса хвоста - 1кг, масса головы такая же, как масса хвоста и половины туловища. А масса туловища такая, как масса головы и хвоста вместе». Какова масса рыбы?

Пусть х кг - масса туловища; тогда (1+1/2х) кг - масса головы. Так как по условию масса туловища равна сумме масс головы и хвоста, составляем и решаем уравнение:

х = 1 + 1/2х + 1,

4 кг - масса туловища, тогда 1+1/2 4=3 (кг) - масса головы и 3+4+1=8 (кг) - масса всей рыбы;

Ответ: 8 кг.

Арифметический метод решения также требует большого умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию.

Рассмотрим пример решения нестандартной задачи арифметическим методом:

Задача. У двух рыбаков спросили: «Сколько рыбы в ваших корзинах?»

«В моей корзине половина того, что в корзине у него, да ещё 10», - ответил первый. «А у меня в корзине столько, сколько у него, да ещё 20», - подсчитал второй. Мы сосчитали, а теперь посчитайте вы.

Построим схему к задаче. Обозначим первым отрезком схемы количество рыбы у первого рыбака. Вторым отрезком обозначим количество рыбы у второго рыбака.

В связи с тем, что современному человеку необходимо иметь представление об основных методах анализа данных и вероятностных закономерностях, играющих важную роль в науке, технике и экономике, в школьный курс математики вводят элементы комбинаторики, теории вероятностей и математической статистики, в которых удобно разбираться при помощи метода перебора .

Включение комбинаторных задач в курс математики оказывает положительное влияние на развитие школьников. «Целенаправленное обучение решению комбинаторных задач способствует развитию такого качества математического мышления, как вариативность. Под вариативностью мышления мы понимаем направленность мыслительной деятельности ученика на поиск различных решений задачи в случае, когда нет специальных указаний на это» .

Комбинаторные задачи можно решать различными методами. Условно эти методы можно разделить на «формальные» и «неформальные». При «формальном» методе решения нужно определить характер выбора, выбрать соответствующую формулу или комбинаторное правило (существуют правила суммы и произведения), подставить числа и вычислить результат. Результат - это количество возможных вариантов, сами же варианты в этом случае не образовываются.

При «неформальном» же методе решения на первый план выходит сам процесс составления различных вариантов. И главное уже не сколько, а какие варианты могут получиться. К таким методам относится метод перебора. Этот метод доступен даже младшим школьникам, и позволяет накапливать опыт практического решения комбинаторных задач, что служит основой для введения в дальнейшем комбинаторных принципов и формул. Кроме того, в жизни человеку приходится не только определять число возможных вариантов, но и непосредственно составлять все эти варианты, а, владея приёмами систематического перебора, это можно сделать более рационально.

Задачи по сложности осуществления перебора делятся на три группы:

  • 1 . Задачи, в которых нужно произвести полный перебор всех возможных вариантов.
  • 2. Задачи, в которых использовать приём полного перебора нецелесообразно и нужно сразу исключить некоторые варианты, не рассматривая их (то есть осуществить сокращённый перебор).
  • 3. Задачи, в которых операция перебора производится несколько раз и по отношению к разного рода объектам.

Приведём соответствующие примеры задач:

Задача. Расставляя знаки «+» и «-» между данными числами 9…2…4, составь все возможные выражения.

Проводится полный перебор вариантов:

  • а) два знака в выражении могут быть одинаковыми, тогда получаем:
    • 9 + 2 + 4 или 9 - 2 - 4;
  • б) два знака могут быть разными, тогда получаем:
    • 9 + 2 - 4 или 9 - 2 + 4.

Задача. Учитель говорит, что он нарисовал в ряд 4 фигуры: большой и маленький квадраты, большой и маленький круги так, что на первом месте находится круг и одинаковые по форме фигуры не стоят рядом, и предлагает ученикам отгадать, в какой последовательности расставлены эти фигуры.

Всего существует 24 различных расположения этих фигур. И составлять их все, а потом выбирать соответствующие данному условию нецелесообразно, поэтому проводится сокращённый перебор.

На первом месте может стоять большой круг, тогда маленький может быть только на третьем месте, при этом большой и маленький квадраты можно поставить двумя способами - на второе и четвёртое место.

Аналогичное рассуждение проводится, если на первом месте стоит маленький круг, и также составляются два варианта.

Задача. Три компаньона одной фирмы хранят ценные бумаги в сейфе, на котором 3 замка. Компаньоны хотят распределить между собой ключи от замков так, чтобы сейф мог открываться только в присутствии хотя бы двух компаньонов, но не одного. Как это можно сделать?

Сначала перебираются все возможные случаи распределения ключей. Каждому компаньону можно дать по одному ключу или по два разных ключа, или по три.

Предположим, что у каждого компаньона по три разных ключа. Тогда сейф сможет открыть один компаньон, а это не соответствует условию.

Предположим, что у каждого компаньона по одному ключу. Тогда, если придут двое из них, то они не смогут открыть сейф.

Дадим каждому компаньону по два разных ключа. Первому - 1 и 2 ключи, второму - 1 и 3 ключи, третьему - 2 и 3 ключи. Проверим, когда придут любые два компаньона, смогут ли они открыть сейф.

Могут прийти первый и второй компаньоны, у них будут все ключи (1 и 2, 1 и 3). Могут прийти первый и третий компаньоны, у них также будут все ключи (1 и 2, 2 и 3). Наконец, могут прийти второй и третий компаньоны, у них тоже будут все ключи (1 и 3, 2 и 3).

Таким образом, чтобы найти ответ в этой задаче, нужно выполнить операцию перебора несколько раз.

При отборе комбинаторных задач нужно обращать внимание на тематику и форму представления этих задач. Желательно, чтобы задачи не выглядели искусственным, а были понятны и интересны детям, вызывали у них положительные эмоции. Можно для составления задач использовать практический материал из жизни.

Встречаются и другие задачи, которые можно решить методом перебора.

В качестве примера решим задачу: «Маркизу Карабасу было 31 год, а его молодому энергичному Коту в Сапогах 3 года, когда произошли известные по сказке события. Сколько лет произошло с тех пор, если сейчас Кот в три раза младше своего хозяина?» Перебор вариантов представим таблицей.

Возраст Маркиза Карабаса и Кота в Сапогах

14 - 3 = 11 (лет)

Ответ: 11 лет прошло.

При этом ученик как бы экспериментирует, наблюдает, сопоставляет факты и на основании частных выводов делает те или иные общие заключения. В процессе этих наблюдений обогащается его реально-практический опыт. Именно в этом и состоит практическая ценность задач на перебор. При этом слово «перебор» используется в смысле разбора всех возможных случаев, которые удовлетворяют условиям задачи, показав, что других решений быть не может.

Эту задачу можно решить и алгебраическим методом.

Пусть Коту х лет, тогда Маркизу 3х, исходя из условия задачи, составим уравнение:

  • 3х - х = 28,
  • 2х = 28,

Коту сейчас 14 лет, тогда прошло 14 - 3 = 11(лет).

Ответ: 11 лет прошло.

Метод рассуждений можно использовать для решения математических софизмов.

Ошибки, допущенные в софизме, обычно сводятся к следующим: выполнению «запрещённых» действий, использованию ошибочных чертежей, неверному словоупотреблению, неточности формулировок, «незаконным» обобщениям, неправильным применениям теорем.

Раскрыть софизм - это, значит, указать ошибку в рассуждении, основываясь на которой была создана внешняя видимость доказательства.

Разбор софизмов, прежде всего, развивает логическое мышление, прививает навыки правильного мышления. Обнаружить ошибку в софизме - это, значит, осознать её, а осознание ошибки предупреждает от повторения её в других математических рассуждениях. Помимо критичности математического мышления этот вид нестандартных задач выявляет гибкость мышления. Сумеет ли ученик «вырваться из тисков» этого строго логичного на первый взгляд пути, разорвать цепь умозаключений в том самом звене, которое является ошибочным и делает ошибочным все дальнейшие рассуждения?

Разбор софизмов помогает также сознательному усвоению изучаемого материала, развивает наблюдательность и критическое отношение к тому, что изучается.

а) Вот, к примеру, софизм с неправильным применением теоремы.

Докажем, что 2 2 = 5.

Возьмём в качестве исходного соотношения следующее очевидное равенство: 4: 4 = 5: 5 (1)

Вынесем за скобки общий множитель в левой и правой частях, получим:

4 (1: 1) = 5 (1: 1) (2)

Числа в скобках равны, значит, 4 = 5 или 2 2 = 5.

В рассуждении при переходе от равенства (1) к равенству (2) создана иллюзия правдоподобия на основе ложной аналогии с распределительным свойством умножения относительно сложения.

б) Софизм с использованием «незаконных» обобщений.

Имеются две семьи - Ивановых и Петровых. Каждая состоит из 3 человек - отца, матери и сына. Отец Иванов не знает отца Петрова. Мать Иванова не знает матери Петровой. Единственный сын Ивановых не знает единственного сына Петровых. Вывод: ни один член семьи Ивановых не знает ни одного члена семьи Петровых. Верно ли это?

Если член семьи Ивановых не знает равного себе по семейному статусу члена семьи Петровых, то это не значит, что он не знает всю семью. Например, отец Иванов может знать мать и сына Петровых.

Метод рассуждений можно использовать и для решения логических задач. Под логическими задачами обычно понимают такие задачи, которые решаются с помощью одних лишь логических операций. Иногда решение их требует длительных рассуждений, необходимое направление которых заранее нельзя предугадать.

Задача. Говорят, что Тортила отдала золотой ключик Буратино не так просто, как рассказал А. Н. Толстой, а совсем иначе. Она вынесла три коробочки: красную, синюю и зелёную. На красной коробочке было написано: «Здесь лежит золотой ключик», а на синей - «Зелёная коробочка пуста», а на зелёной - «Здесь сидит змея». Тортила прочла надписи и сказала: «Действительно в одной коробочке лежит золотой ключик, в другой - змея, а третья - пуста, но все надписи неверны. Если отгадаешь, в какой коробочке лежит золотой ключик, он твой». Где лежит золотой ключик?

Так как все надписи на коробочках неверны, то в красной коробочке лежит не золотой ключик, зеленая коробочка не пустая и в ней не змея, значит в зеленой коробочке - ключик, в красной - змея, а синяя - пуста.

При решении логических задач активизируется логическое мышление, а это умение выводить следствия из посылок, которое крайне необходимо для успешного овладения математикой.

Ребус - это загадка, но загадка не совсем обычная. Слова и числа в математических ребусах изображены при помощи рисунков, звездочек, цифр и различных знаков. Чтобы прочесть то, что зашифровано в ребусе, надо правильно назвать все изображенные предметы и понять, какой знак что изображает. Ребусами люди пользовались еще тогда, когда не умели писать. Свои письма они составляли из предметов. Например, вожди одного племени послали однажды своим соседям вместо письма птицу, мышь, лягушку и пять стрел. Это означало: «Умеете ли летать как птицы и прятаться в земле как мыши, прыгать по болотам как лягушки? Если не умеете, то не пробуйте воевать с нами. Мы засыпим вас стрелами, как только вы вступите в нашу страну».

Судя по первой букве суммы 1), Д = 1 или 2.

Предположим, что Д = 1. Тогда, У? 5. У = 5 исключаем, т.к. Р не может быть равно 0. У? 6, т.к. 6 + 6 = 12, т.е. Р = 2. Но такое значение Р при дальнейшей проверке не подходит. Аналогично, У? 7.

Предположим, что У = 8. Тогда, Р = 6, А = 2, К = 5, Д = 1.

Магический (волшебный) квадрат - это квадрат, в котором сумма чисел по вертикали, горизонтали и диагонали получается одинаковой.

Задача. Расположите числа от 1 до 9 так, чтобы по вертикали, горизонтали и диагонали получилась одинаковая сумма чисел, равная 15.

Хотя общих правил для решения нестандартных задач нет (поэтому эти задачи и называются нестандартными), однако мы постарались дать ряд общих указаний - рекомендаций, которыми следует руководствоваться при решении нестандартных задач разных видов.

Каждая нестандартная задача оригинальна и неповторима в своём решении. В связи с этим разработанная методика обучения поисковой деятельности при решении нестандартных задач не формирует навыки решения нестандартных задач, речь может идти лишь об отработке определённых умений:

  • · умения понимать задачу, выделять главные (опорные) слова;
  • · умения выявлять условие и вопрос, известное и неизвестное в задаче;
  • · умения находить связь между данным и искомым, то есть проводить анализ текста задачи, результатом которого является выбор арифметического действия или логической операции для решения нестандартной задачи;
  • · умения записывать ход решения и ответ задачи;
  • · умения проводить дополнительную работу над задачей;
  • · умение отбирать полезную информацию, содержащуюся в самой задаче, в процессе её решения, систематизировать эту информацию, соотнося с уже имеющимися знаниями.

Нестандартные задачи развивают пространственное мышление, которое выражается в способности воссоздавать в уме пространственные образы объектов и выполнять над ними операции. Пространственное мышление проявляется при решении задач типа: «Сверху на кромке круглого торта поставили 5 точек из крема на одинаковом расстоянии друг от друга. Через все пары точек сделали разрезы. Сколько всего получилось кусочков торта?»

Практический метод можно рассмотреть для нестандартных задач на деление.

Задача. Палку нужно распилить на 6 частей. Сколько потребуется распилов?

Решение: Распилов потребуется 5.

При изучении нестандартных задач на деление надо понять: чтобы разрезать отрезок на Р частей, следует сделать (Р - 1) разрез. Этот факт нужно установить с детьми индуктивным путём, а затем использовать при решении задач.

Задача. В трёхметровом бруске - 300 см. Его надо разрезать на бруски длиной 50 см каждый. Сколько надо сделать разрезов?

Решение: Получаем 6 брусков 300: 50 = 6 (брусков)

Рассуждаем так: чтобы разделить брусок пополам, т. е. на две части, надо сделать 1 разрез, на 3 части - 2 разреза и так далее, на 6 частей - 5 разрезов.

Итак, надо сделать 6 - 1 = 5 (разрезов).

Ответ: 5 разрезов.

Итак, одним из основных мотивов, побуждающих школьников учиться, является интерес к предмету. Интерес - это активная познавательная направленность человека на тот или иной предмет, явление и деятельность, созданная с положительным эмоциональным отношением к ним. Одним из средств развития интереса к математике являются нестандартные задачи. Под нестандартной задачей понимают такие задачи, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения. Решение таких задач позволяет учащимся активно включиться в учебную деятельность. Существуют различные классификации задач и методов их решения. Самыми часто используемыми являются алгебраический, арифметический, практический методы и метод перебора, рассуждения и предположения.

1 ИСТОРИЧЕСКАЯ СПРАВКА

2 РЕШЕНИЕ ЗАДАЧ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ ФУНКЦИИ

2.1 Использование монотонности функции

2.2 Использование ограниченности функции

2.3 Использование периодичности функции

2.4 Использование четности функции

2.5 Использование ОДЗ функции

3 НЕКОТОРЫЕ ИСКУССТВЕННЫЕ СПОСОБЫ РЕШЕНИЯ УРАВНЕНИЙ

3.1 Умножение уравнения на функцию

3.2 Угадывание корня уравнения

3.3 Использование симметричности уравнения

3.4 Исследование уравнения на промежутках действительной оси

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

ПРИЛОЖЕНИЕ


ВВЕДЕНИЕ

Не всякое уравнение или неравенство в результате преобразований или с помощью удачной замены переменной может быть сведено к уравнению (неравенству) того или иного стандартного вида, для которого существует определенный алгоритм решения. В таких случаях иногда оказывается полезным использовать другие методы решения, речь о которых и пойдет в ходе данной работы. Выше сказанное определяет актуальность курсовой работы. Объект исследования – уравнения и неравенства, не поддающиеся решению с помощью стандартных методов, или отличающиеся громоздкостью стандартного решения.

Целью данной работы является ознакомление с нестандартными методами решения уравнений и неравенств.

Для достижения поставленной цели в данной работе решались следующие задачи:

1.Собрать сведения из истории математики о решении уравнений.

2.Рассмотреть и применить на практике методы решения уравнений и неравенств, основанные на использовании свойств функции.

3.Рассмотреть и применить на практике дополнительные нестандартные методы решения уравнений и неравенств

Практическая значимость работы состоит в том, что не всегда при решении сложных уравнений или неравенств следует идти по «накатанной колее», пытаясь найти решение «в лоб»: достаточно лишь взглянуть на него и найти зацепку, позволяющую избежать сложных вычислений и преобразований. Курсовая работа состоит из введения, трех глав и списка использованных источников. В первой главе приведены некоторые сведения из истории математики о решении уравнений. Во второй главе рассмотрены методы решения, основанные на использовании свойств функции. Третья глава посвящена рассмотрению дополнительных (искусственных) методов решения.

Уравнения и системы уравнений математики умели решать очень давно. В «Арифметике» греческого математика из Александрии Диофанта (III в.) еще не было систематического изложения алгебры, однако в ней содержался ряд задач, решаемых при помощи составления уравнений. Есть в ней такая задача:

«Найти два числа по их сумме 20 и произведению 96».

Чтобы избежать решения квадратного уравнения общего вида, к которому приводит обозначение одного из чисел буквой и которое тогда еще не умели решать, Диофант обозначал неизвестные числа 10 + х и 10-х (в современной записи) и получал неполное квадратное уравнение 100-х 2 = 96, для которого указывал лишь положительный корень 2.

Задачи на квадратные уравнения встречаются в трудах индийских математиков уже с V в. н. э.

Квадратные уравнения классифицируются в трактате «Краткая книга об исчислении алгебры и алмукабалы» Мухаммеда аль-Хорезми (787 - ок. 850). В нем рассмотрены и решены (в геометрической форме) 6 видов квадратных уравнений, содержащих в обеих частях только члены с положительными коэффициентами. При этом рассматривались только положительные корни уравнений.

В работах европейских математиков XIII - XVI вв. даются отдельные методы решения различных видов квадратных уравнений. Слияние этих методов в общее правило произвел немецкий математик Михаэль Штифель (1487 - 1567), который рассматривал уже и отрицательные корни.

В самом известном российском учебнике «Арифметика» Леонтия Филипповича Магницкого (1669-1739) имелось немало задач на квадратные уравнения. Вот одна из них:

«Некий генерал хочет с 5000 человек баталию учинить, и чтобы та была в лице вдвое, нежели в стороне. Колико оная баталия будет иметь в лице и в стороне?», т. е. сколько солдат надо поставить по фронту и сколько им в затылок, чтобы число солдат по фронту было в 2 раза больше числа солдат, расположенных им «в затылок»?

В древневавилонских текстах (3000 - 2000 лет до н. э.) встречаются и задачи, решаемые теперь с помощью систем уравнений, содержащих и уравнения второй степени. Приведем одну из них:

«Площади двух своих квадратов я сложил: 25 . Сторона второго квадрата равна стороны первого и еще 5».

Соответствующая система в современной записи имеет вид:

В XVI в. французский математик Франсуа Виет (1540 - 1603), служивший шифровальщиком при дворе французского короля, впервые ввел буквенные обозначения не только для неизвестных величин, но и для данных, т. е. коэффициентов уравнений. Ф. Виет для обозначения нерасшифрованных букв в донесениях противника использовал редкие буквы латинского алфавита х, у и z, что и положило начало традиции обозначать неизвестные в уравнениях буквами х, у и z. Особенно ценил Виет открытые им формулы, которые теперь называются формулами Виета. Однако сам Виет признавал только положительные корни.

Лишь в ХVII в. после работ Декарта, Ньютона и других математиков решение квадратных уравнений приняло современный вид.

Вернемся в начало XVI в. Тогда профессор математики болонского университета Сципион дель Ферро (1465-1526) впервые нашел алгебраическое решение уравнения третьей степени вида

где р и q – числа положительные.

Это открытие, по обычаям того времени, профессор держал в строгом секрете. О нем знали лишь два его ученика, в том числе некий Фиоре. Утаивание математических открытий тогда было обычным явлением, так как в Италии практиковались математические диспуты-поединки. На многолюдных собраниях противники предлагали друг другу задачи для решения на месте или в определенный срок. Чаще всего это были задачи по алгебре, которую называли тогда великим искусством. Побеждал тот, кто решал больше задач. Победитель не только награждался славой и назначенным денежным призом, но и мог занять университетскую кафедру, а потерпевший поражение часто терял занимаемое место. Вот почему участнику диспута было важно обладать неизвестным другим алгоритмом решения некоторых задач.

После смерти профессора дель Ферро его ученик Фиоре, который сам не был глубоким математиком, вызвал на публичный диспут одного из виднейших математиков того времени Никколо Тарталья (1499-1557). Готовясь к диспуту, Тарталья открыл формулу для нахождения корней кубических уравнений в радикалах, так как предполагал, что Фиоре уже обладал этой формулой. Позднее Тарталья писал: «Я приложил все свое рвение, усердие и уменье, чтобы найти правило для решения кубических уравнений, и, благодаря благословенной судьбе, мне удалось это сделать за 8 дней до срока».

Диспут состоялся 20 февраля 1535 г. Тарталья в течение двух часов решил 30 задач, предложенных ему противником, а Фиоре не смог решить ни одной из 30 задач, предложенных Тартальей. После диспута Тарталья стал знаменитым во всей Италии, но продолжал держать открытую формулу в секрете.

Другой итальянский математик Джерол. но (1501 - 1576) узнал от Тартальи правило решения кубического уравнения (1) и дал «священную клятву», что никому не раскроет этой тайны. Правда, Тарталья лишь частично раскрыл свою тайну, но Кардано, познакомившись с рукописями покойного профессора дель Ферро, получил полную ясность в этом вопросе. В 1545 г. Кардано опубликовал знаменитый свой труд «О великом искусстве, или об алгебраических вещах, в одной книге», где впервые опубликовал формулу для решения уравнения (1), а кубическое уравнение общего вида предлагал свести к уравнению (1).

После выхода в свет этой книги Кардано был обвинен Тартальей в нарушении клятвы, но формула, открытая дель Ферро и Тартальей, и по сей день называется формулой Кардано.

Такова полная драматизма история открытия формулы корней кубического уравнения (1).

В той же книге Кардано привел алгебраическое решение уравнения четвертой степени. Это открытие сделал один из его учеников Лудовико Феррари (1522 - 1565). После этого начались настойчивые поиски формул, которые сводили бы решение уравнений высших степеней к извлечению корней («решение в радикалах»). Эти поиски продолжались около трех столетий, и лишь в начале XIX в. норвежский ученый Нильс Хенрик Абель (1802 -1829) и французский ученый Эварист Галуа (1811 -1832) доказали, что уравнения степеней выше четвертой в общем случае в радикалах не решаются.

Математик и философ Рене Декарт (1596 -1650) впервые сформулировал в своей книге «Геометрия» основную теорему алгебры о числе корней уравнения n-й степени. При этом Декарт допускал существование не только истинных (положительных) и ложных (меньших, чем ничего, т. е. меньших нуля - отрицательных) корней, но и воображаемых, мнимых (у Декарта - imaginaires), т. е. комплексных корней.

Еще в древности математики в процессе решения задач сталкивались с извлечением корня квадратного из отрицательного числа; в этом случае задача считалась неразрешимой. Однако постепенно выяснялось, что решение многих задач, задаваемых в действительных числах, получает простое объяснение при помощи выражений a + bi, где i 2 = -1, которые в конце концов тоже стали называть числами, но уже комплексными. Первое обоснование простейших действий над комплексными числами дал итальянский математик Раффаэле Бомбелли (ок. 1530 -1572) в 1572 г., хотя еще долгое время к комплексным числам относились как к чему-то сверхъестественному.

Академик Петербургской академии наук Леонард Эйлер (1707 -1783) внес существенный вклад в вопросы теории комплексных чисел. После его работ комплексные числа получили окончательное признание как предмет и средство изучения. Само название «комплексное число» было предложено в 1831 г. немецким математиком Карлом Фридрихом Гауссом (1777 - 1855).

В настоящее время комплексные числа широко употребляются во многих вопросах физики и техники.

Выше речь шла об алгебраических уравнениях, т. е. уравнениях f(x) = O, где f(x) - многочлен относительно х.

Кроме алгебраических уравнений, есть еще и трансцендентные уравнения: показательные, логарифмические, тригонометрические и др. Решение трансцендентных уравнений, а также неравенств существенно опирается на свойства функций, которые изучаются в математике относительно недавно.

Особое место среди алгебраических уравнений занимают так называемые диофантовы уравнения, т. е. уравнения, в которых неизвестных больше одной.

Наиболее известными из них являются линейные диофантовы уравнения. Примеры задач, приводящих к линейным диофантовым уравнениям, находим в сборнике задач монаха Алькуина, приглашенного в 795 г. Карлом Великим преподавать в первую из известных школ в г. Аахен. Вот эта задача:

«100 шеффелей (денежных единиц) разделили между мужчинами, женщинами и детьми (число персон 100) и дали при этом мужчинам по 3 шеффеля, женщинам по 2 и детям по шеффеля. Сколько было мужчин, женщин и детей?»

Обозначив количество мужчин за х, количество женщин за у, мы придем к уравнению

Зх + 2y+ (100-х-y)= 100

Общего решения линейных диофантовых уравнений в те времена еще не знали и довольствовались лишь несколькими решениями, удовлетворяющими условию задачи. У самого Алькуина было приведено лишь одно решение этой задачи: мужчин, женщин и детей было 11, 15 и 74, а задача имеет 784 решения в натуральных числах.

Задачи, приводящие к линейным диофантовым уравнениям, имелись у Леонардо Пизанского (Фибоначчи) (1180 - 1240), в «Арифметике» Л. Ф. Магницкого.

Известное диофантово уравнение Пифагора (VI в. до н. э.) х 2 + у 2 = z 2 решают в натуральных числах. Его решениями служат тройки чисел (х; у; z):

x = (m 2 -n 2)l, y = 2mnl, z = (m 2 + n 2)l,

где т, п, l - любые натуральные числа (т> п). Эти формулы помогают находить прямоугольные треугольники, длины сторон которых являются натуральными числами.

В 1630 г. французский математик Пьер Ферма (1601 - 1665) сформулировал гипотезу, которую называют великой (или большой) теоремой Ферма: «Уравнение х п + у п = z n для натурального п ≥ 3 не имеет решений в натуральных числах». Ферма не доказал свою теорему в общем случае, но известна его запись на полях «Арифметики» Диофанта: «...невозможно куб записать в виде суммы двух кубов, или четную степень в виде суммы таких же степеней, или вообще любое число, которое является степенью большей, чем вторая, нельзя записать в виде суммы двух таких же степеней. У меня есть поистине удивительное доказательство этого утверждения, но поля эти слишком узки, чтобы его уместить». Позднее в бумагах Ферма было найдено доказательство его теоремы для п= 4. С тех пор более 300 лет математики пытались доказать великую теорему Ферма. В 1770 г. Л.Эйлер доказал теорему Ферма для п = 3, в 1825 г. Адриен Лежандр (1752 1833) и Петер Дирихле (1805 - 1859) - для п = 5. Доказательство великой теоремы Ферма в общем случае не удавалось долгие годы. И только в 1995 г. Эндрю Вайлс доказал эту теорему.


Не всякое уравнение f(x) = g(x) или неравенство в результате преобразований или с помощью удачной замены переменной может быть сведено к уравнению или неравенству того или иного стандартного вида, для которого существует определенный алгоритм решения. В таких случаях иногда оказывается полезным использовать некоторые свойства функций, такие как монотонность, периодичность, ограниченность, четность и др.

Функция f (x) называется возрастающей на промежутке D, если для любых чисел x 1 и x 2 из промежутка D таких, что x 1 < x 2 , выполняется неравенство f (x 1) < f (x 2).

Функция f (x) называется убывающей на промежутке D, если для любых чисел x 1 и x 2 из промежутка D таких, что x 1 < x 2 , выполняется неравенство f (x 1) > f (x 2).

На показанном на рисунке 1 графике

Рисунок 1

Функция y = f (x), , возрастает на каждом из промежутков и убывает на промежутке (x 1 ; x 2). Обратите внимание, что функция возрастает на каждом из промежутков , но не на объединении промежутков

Если функция возрастает или убывает на некотором промежутке, то она называется монотонной на этом промежутке.

Заметим, что если f – монотонная функция на промежутке D (f (x)), то уравнение f (x) = const не может иметь более одного корня на этом промежутке.

Действительно, если x 1 < x 2 – корни этого уравнения на промежутке D (f(x)), то f (x 1) = f (x 2) = 0, что противоречит условию монотонности.

Перечислим свойства монотонных функций (предполагается, что все функции определены на некотором промежутке D).

· Сумма нескольких возрастающих функций является возрастающей функцией.

· Произведение неотрицательных возрастающих функций есть возрастающая функция.

· Если функция f возрастает, то функции cf (c > 0) и f + c также возрастают, а функция cf (c < 0) убывает. Здесь c – некоторая константа.

· Если функция f возрастает и сохраняет знак, то функция убывает.

· Если функция f возрастает и неотрицательна, то f n где nN, также возрастает.

· Если функция f возрастает и n – нечетное число, то f также возрастает.

· Композиция g (f (x)) возрастающих функций f и g также возрастает.

Аналогичные утверждения можно сформулировать и для убывающей функции.

Точка a называется точкой максимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≥ f (x).

Точка a называется точкой минимума функции f, если существует такая ε-окрестность точки a, что для любого x из этой окрестности выполняется неравенство f (a) ≤ f (x).

Точки, в которых достигается максимум или минимум функции, называются точками экстремума.

В точке экстремума происходит смена характера монотонности функции. Так, слева от точки экстремума функция может возрастать, а справа – убывать. Согласно определению, точка экстремума должна быть внутренней точкой области определения.

Если для любого (x ≠ a) выполняется неравенство f (x) ≤ f (a) , то точка a называется точкой наибольшего значения функции на множестве D:

Если для любого (x ≠ b) выполняется неравенство f (x) > f (b) , то точка b называется точкой наименьшего значения функции на множестве D.

Точка наибольшего или наименьшего значения функции на множестве D может быть экстремумом функции, но не обязательно им является.

Точку наибольшего (наименьшего) значения непрерывной на отрезке функции следует искать среди экстремумов этой функции и ее значений на концах отрезка.

Решение уравнений и неравенств с использованием свойства монотонности основывается на следующих утверждениях.

1. Пусть f(х) - непрерывная и строго монотонная функция на промежутке Т, тогда уравнение f(x) = С, где С - данная константа, может иметь не более одного решения на промежутке Т.

2. Пусть f(x) и g(х) - непрерывные на промежутке T функции, f(x) строго возрастает, а g(х) строго убывает на этом промежутке, тогда уравнение f(х) = =g(х) может иметь не более одного решения на промежутке Т. Отметим, что в качестве промежутка T могут быть бесконечный промежуток (-∞;+∞) , промежутки (а;+∞), (-∞; а), [а;+∞), (-∞; b], отрезки, интервалы и полуинтервалы.

Пример 2.1.1 Решите уравнение

. (1)

Решение. Очевидно, что х ≤ 0 не может являться решением данного уравнения, так как тогда . Для х > 0 функция непрерывна и строго возрастает, как произведение двух непрерывных положительных строго возрастающих для этих х функций f(x) = х и . Значит, в области х > 0 функция принимает каждое свое значение ровно в одной точке. Легко видеть, что х = 1 является решением данного уравнения, следовательно, это его единственное решение.

Ответ: {1}.

Пример 2.1.2Решите неравенство

. (2)

Решение. Каждая из функций у = 2 x , у = 3 x , у = 4 х непрерывная и строго возрастающая на всей оси. Значит, такой же является и исходная функция . Легко видеть, что при х = 0 функция принимает значение 3. В силу непрерывности и строгой монотонности этой функции при х > 0 имеем , при х < 0 имеем . Следовательно, решениями данного неравенства являются все х < 0.

Ответ: (-∞; 0).

Пример 2.1.3 Решите уравнение

. (3)

Решение. Область допустимых значений уравнения (3) есть промежуток . На ОДЗ функции и непрерывны и строго убывают, следовательно, непрерывна и убывает функция . Поэтому каждое свое значение функция h(x) принимает только в одной точке. Так как, то х = 2 является единственным корнем исходного уравнения.

При решении уравнений и неравенств свойство ограниченности снизу или сверху функции на некотором множестве часто играет определяющую роль.

Если существует число C такое, что для любого выполняется неравенство f (x) ≤ C, то функция f называется ограниченной сверху на множестве D (рисунок 2).


Рисунок 2

Если существует число c такое, что для любого выполняется неравенство f (x) ≥ c, то функция f называется ограниченной снизу на множестве D (рисунок 3).

Рисунок 3

Функция, ограниченная и сверху, и снизу, называется ограниченной на множестве D. Геометрически ограниченность функции f на множестве D означает, что график функции y = f (x), лежит в полосе c ≤ y ≤ C (рисунок 4).

Рисунок 4

Если функция не является ограниченной на множестве, то говорят, что она не ограничена.

Примером функции, ограниченной снизу на всей числовой оси, является функция y = x 2 . Примером функции, ограниченной сверху на множестве (–∞; 0) является функция y = 1/x. Примером функции, ограниченной на всей числовой оси, является функция y = sin x.

Пример 2.2.1 Решите уравнение

sin(x 3 + 2х 2 + 1) = х 2 + 2х + 2. (4)

Решение. Для любого действительного числа х имеем sin(x 3 + 2х 2 + 1) ≤ 1, х 2 + 2х + 2 = (x + 1) 2 +1 ≥ 1. Поскольку для любого значения х левая часть уравнения не превосходит единицы, а правая часть всегда не меньше единицы, то данное уравнение может иметь решение только при .

При , , т.е. при уравнение (4) так же корней не имеет.

Пример 2.2.2 Решите уравнение

. (5)

Решение. Очевидно, что х = 0, х = 1, х = -1 являются решениями данного уравнения. Для нахождения других решений в силу нечетности функции f(х) = = x 3 - x - sinπx достаточно найти его решения в области х > 0, х ≠ 1, поскольку если x 0 > 0 является его решением, то и (-x 0) также является его решением.

Разобьем множество х > 0, х ≠ 1, на два промежутка: (0; 1) и (1; +∞)

Перепишем начальное уравнение в виде x 3 - x = sinπx. На промежутке (0; 1) функция g(х) = x 3 - x принимает только отрицательные значения, поскольку х 3 < < х, а функция h(x) = sinπx только положительные. Следовательно, на этом промежутке уравнение не имеет решений.

Пусть х принадлежит промежутку (1; +∞). Для каждого из таких значений х функция g(х) = х 3 - х принимает положительные значения, функция h(x) = sinπxпринимает значения разных знаков, причем на промежутке (1; 2] функция h(x) = sinπx неположительна. Следовательно, на промежутке (1; 2] уравнение решений не имеет.

Если же х > 2, то |sinπx| ≤ 1, x 3 - x = x(x 2 - 1) > 2∙3 = 6, а это означает, что и на промежутке (1; +∞) уравнение также не имеет решений.

Итак, x = 0, x = 1 и x = -1 и только они являются решениями исходного уравнения.

Ответ: {-1; 0; 1}.


Пример 2.2.3 Решите неравенство

Решение. ОДЗ неравенства есть все действительные x, кроме x = -1. Разобьем ОДЗ неравенства на три множества: -∞ < x < -1, -1 < x ≤ 0, 0 < x < +∞ и рассмотрим неравенство на каждом из этих промежутков.

Пусть -∞ < x < -1. Для каждого из этих x имеем g(x) = < 0, а f(x) = 2 x > 0. Следовательно, все эти x являются решениями неравенства.

Пусть -1 < x ≤ 0. Для каждого из этих x имеем g(x) = 1 - , а f(x) = 2 x ≤ 1. Следовательно, ни одно из этих x не является решением данного неравенства.

Пусть 0 < x < +∞. Для каждого из этих x имеем g(x) = 1 - , a . Следовательно, все эти x являются решениями исходного неравенства.

Ответ: .

Функция f (x) называется периодической с периодом T ≠ 0, если выполняются два условия:

· если , то x + T и x – T также принадлежат области определения D (f (x));

· для любого выполнено равенство


f (x + T) = f (x).

Поскольку то из приведенного определения следует, что

Если T – период функции f (x), то очевидно, что каждое число nT, где , n ≠ 0, также является периодом этой функции.

Наименьшим положительным периодом функции называется наименьшее из положительных чисел T, являющихся периодом данной функции.

График периодической функции

График периодической функции обычно строят на промежутке В)(0;1] Г) равно:

А) -12 Б) 12 В) -6 Г) -9 Д) 8

2. Сумма модулей корней уравнения-(√(5- x )√(5+x))+2=-1

равна:

А) 4 Б) 8 В)7 Г) 5 Д) 9

3. Корни уравнения x 4 =|(-|x|+1) 2 -1| принадлежат множеству:

А)(-1;1) Б) [-1;1] В){4;11} Г){-1;0;1} Д) (0;2]

4*.Значение а, при котором уравнение 2/ х= а- х  имеет три корня, относится к промежутку:

А) (3;+ ) Б) [–1;12] В)(- ;1) Г) }