Как движутся электроны в металле. Электрический ток в металлах. Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, - презентация


Все металлы в твердом и жидком состоянии являются проводниками электрического тока. Специально поставленные опыты показали, что при прохождении злектрического тока масса металлических проводников остается постоянной, не изменяется и их химический состав. На этом основании можно было предположить, что в создании электрического тока в металлах участвуют только электроны. Предположение об электронной природе электрического тока в металлах подтверждено опытами советских физиков Л. И. Мандельштама и Н. Д. Папалекси и американских физиков Т. Стюарта и Р. Толмена. В этих опытах было обнаружено, что при резкой остановке быстро вращающейся катушки в проводе катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток. Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью V.

Так как кинетическая энергия электронов, приобретаемая под действием электрического поля, передается при столкновении ионами кристаллической решетки, то при прохождении постоянного тока проводник нагревается.

Зависимость удельного электрического сопротивления металлов от температуры.

Удельное сопротивление металлов при нагревании увеличивается приблизительно по линейному закону (рис. 152):

где р - удельное электрическое сопротивление металла при температуре t, ро - его удельное сопротивление при О °С, а - температурный коэффициент сопротивления, особый для каждого металла,

С приближением температуры к абсолютному нулю удельное сопротивление монокристаллов становится очень малым. Этот факт свидетельствует о том, что в идеальной кристаллической решетке металла электроны перемещаются под действием электрического поля, не взаимодействуя с ионами решетки. Длина их свободного пробега при этом может достигать значений, порядка 1 см, т. е. в 107-108 раз превышает межатомные расстояния в кристалле. Электроны взаимодействуют лишь с ионами, не находящимися в узлах кристаллической решетки.

При повышении температуры возрастает число дефектов в кристаллической решетке из-за тепловых колебаний ионов, - это приводит к возрастанию удельного сопротивления кристалла.

В том, что электрическое сопротивление металлов обусловлено взаимодействиями электронов проводимости с различными дефектами решетки, убеждает и тот факт, что удельное сопротивление кристаллов металлов сильно зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

Сверхпроводимость.

В 1911 г. нидерландский ученый Гейке Камерлинг-Ониес (1853- 1926) обнаружил, что при понижении температуры ртути до 4,1 К ее удельное сопротивление скачком уменьшается до нуля (рис. 153). Явление уменьшения удельного сопротивления до нуля при температуре, отличной от абсолютного нуля, называется сверхпроводимостью. Материалы, обнаруживающие способность переходить при некоторых температурах, отличных от абсолютного нуля, в сверхпроводящее состояние, называются сверхпроводниками.

Прохождение тока в сверхпроводнике происходит без потерь энергии, поэтому однажды возбужденный в сверхпроводящем кольце электрический ток может существовать неограниченно долго без изменения.

Сверхпроводящие материалы уже используются в электромагнитах. Ведутся исследования, направленные на создание сверхпроводящих линий электропередачи.

Применение явления сверхпроводимости в широкой

практике может стать реальностью в ближайшие годы благодаря открытию в 1986 г. сверхпроводимости керамик - соединений лантана, бария, меди и кислорода. Сверхпроводимость таких керамик сохраняется до температур около 100 К.

Скорость упорядоченного движения электронов в проводнике.

Для определения скорости упорядоченного движения свободных электрических зарядов в проводнике нужно знать концентрацию свободных носителей заряда и силу тока . Если концентрация свободных электрических зарядов в проводнике то за промежуток времени через поперечное сечение проводника при скорости их упорядоченного движения проходит электрический заряд равный

В этом разделе мы приступаем к подробному изучению того, как осуществляется прохождение электрического тока в различных проводящих средах твёрдых телах, жидкостях и газах.

Напомним, что необходимым условием возникновения тока является наличие в среде достаточно большого количества свободных зарядов, которые могут начать упорядоченное движение под действием электрического поля. Такие среды как раз и называются проводниками электрического тока.

Наиболее широко распространены металлические проводники. Поэтому начинаем мы с вопросов распространения электрического тока в металлах.

Мы много раз говорили о свободных электронах, которые являются носителями свободных зарядов в металлах. Вам хорошо известно, что электрический ток в металлическом проводнике образуется в результате направленного движения свободных электронов.

3.13.1 Свободные электроны

Металлы в твёрдом состоянии имеют кристаллическую структуру: расположение атомов в пространстве характеризуется периодической повторяемостью и образует геометрически правильный рисунок, называемый кристаллической решёткой.

Атомы металлов имеют небольшое число валентных электронов, расположенных на внешней электронной оболочке. Эти валентные электроны слабо связаны с ядром, и атом легко может их потерять.

Когда атомы металла занимают места в кристаллической решётке, валентные электроны покидают свои оболочки они становятся свободными и отправляются ¾гулять¿ по всему кристаллу18 . В узлах кристаллической решётки металла остаются положительные ионы, пространство между которыми заполнено ¾газом¿ свободных электронов (рис.3.47 ).

+ + + ++

Рис. 3.47. Свободные электроны

Свободные электроны и впрямь ведут себя подобно частицам газа19 совершая тепловое движение, они хаотически снуют туда-сюда между ионами кристаллической решётки. Суммарный заряд свободных электронов равен по модулю и противоположен по знаку общему заряду положительных ионов, поэтому металлический проводник в целом оказывается электрически нейтральным.

Газ свободных электронов является ¾клеем¿, на котором держится вся кристаллическая структура проводника. Ведь положительные ионы отталкиваются друг от друга, так что кристаллическая решётка, распираемая изнутри мощными кулоновскими силами, могла бы разлететься в разные стороны. Однако в то же самое время ионы металла притягиваются к обволаки-

18 А именно, свободные электроны перемещаются по внешним орбиталям соседних атомов. Эти орбитали перекрываются друг с другом вследствие близкого расположения атомов в кристаллической решётке, так что свободные электроны оказываются ¾общей собственностью¿ всего кристалла.

19 Другой адекватный образ электронное море, которое ¾омывает¿ кристаллическую решётку.


вающему их электронному газу и, как ни в чём не бывало, остаются на своих местах, совершая лишь тепловые колебания в узлах кристаллической решётки вблизи положений равновесия.

Что произойдёт, если металлический проводник включить в замкнутую цепь, содержащую источник тока? Свободные электроны продолжают совершать хаотическое тепловое движение, но теперь под действием возникшего внешнего электрического поля они вдобавок начнут перемещаться упорядоченно. Это направленное течение электронного газа, накладывающееся на тепловое движение электронов, и есть электрический ток в металле20 . Скорость упорядоченного движения электронов в металлическом проводнике, как нам уже известно, составляет порядка 0;1 мм/с.

3.13.2 Опыт Рикке

Почему мы решили, что ток в металлах создаётся движением именно свободных электронов? Положительные ионы кристаллической решётки также испытывают на себе действие внешнего электрического поля. Может, они тоже перемещаются внутри металлического проводника и участвуют в создании тока?

Упорядоченное движение ионов означало бы постепенный перенос вещества вдоль направления электрического тока. Поэтому надо просто пропускать ток по проводнику на протяжении весьма длительного времени и посмотреть, что в итоге получится. Такого рода эксперимент и был поставлен Э. Рикке в 1901 году.

В электрическую цепь были включены три прижатых друг к другу цилиндра: два медных по краям и один алюминиевый между ними (рис. 3.48 ). По этой цепи пропускался электрический ток в течение года.

Рис. 3.48. Опыт Рикке

За год сквозь цилиндры прошёл заряд более трёх миллионов кулон. Предположим, что каждый атом металла теряет по одному валентному электрону, так что заряд иона равен элементарному заряду e = 1;6 10 19 Кл. Если ток создаётся движением положительных ионов, то нетрудно подсчитать (сделайте это сами!), что такая величина прошедшего по цепи заряда соответствует переносу вдоль цепи около 2 кг меди.

Однако после разъединения цилиндров было обнаружено лишь незначительное проникновение металлов друг в друга, обусловленное естественной диффузией их атомов (и не более того). Электрический ток в металлах не сопровождается переносом вещества, поэтому положительные ионы металла не принимают участия в создании тока.

3.13.3 Опыт Стюарта–Толмена

Прямое экспериментальное доказательство того, что электрический ток в металлах создаётся движением свободных электронов, было дано в опыте Т. Стюарта и Р. Толмена (1916 год).

20 Поэтому свободные электроны называются также электронами проводимости.

Рис. 3.49. Опыт Стюарта–Толмена

Эксперименту Стюарта–Толмена предшествовали качественные наблюдения, сделанные четырьмя годами ранее русскими физиками Л. И. Мандельштамом и Н. Д. Папалекси. Они обратили внимание на так называемый электроинерционный эффект: если резко затормозить движущийся проводник, то в нём возникает кратковременный импульс тока. Эффект объясняется тем, что в течение небольшого времени после торможения проводника его свободные заряды продолжают двигаться по инерции.

Однако никаких количественных результатов Мандельштам и Папалекси не получили, и наблюдения их опубликованы не были. Честь назвать опыт своим именем принадлежит Стюарту и Толмену, которые не только наблюдали указанный электроинерционный эффект, но и произвели необходимые измерения и расчёты.

Установка Стюарта и Толмена показана на рис. 3.49 . Катушка большим числом витков металлического провода приводилась в быстрое вращение вокруг своей оси. Концы обмотки с помощью скользящих контактов были подсоединены к специальному прибору баллистическому гальванометру, который позволяет измерять проходящий через него заряд.

После резкого торможения катушки в цепи возникал импульс тока. Направление тока указывало на то, что он вызван движением отрицательных зарядов. Измеряя баллистическим гальванометром суммарный заряд, проходящий по цепи, Стюарт и Толмен вычислили отношение q=m заряда одной частицы к её массе. Оно оказалось равно отношению e=m для электрона, которое в то время уже было хорошо известно.

Так было окончательно выяснено, что носителями свободных зарядов в металлах являются свободные электроны. Как видите, этот давно и хорошо знакомый

вам факт был установлен сравнительно поздно учитывая, что металлические проводники к тому моменту уже более столетия активно использовались в самых разнообразных экcпериментах по электромагнетизму21 .

3.13.4 Зависимость сопротивления от температуры

Опыт показывает, что при нагревании металлического проводника его сопротивление увеличивается. Как это объяснить?

Причина проста: с повышением температуры тепловые колебания ионов кристаллической решётки становятся более интенсивными, так что число соударений свободных электронов с ионами возрастает. Чем активнее тепловое движение решётки, тем труднее электронам пробираться сквозь промежутки между ионами22 . Скорость упорядоченного движения электронов уменьшается, поэтому уменьшается и сила тока (при неизменном напряжении). Это и означает увеличение сопротивления.

21 Сравните, например, с датой открытия закона Ома 1826 год. Дело, однако, заключается в том, что сам электрон был открыт лишь в 1897 году.

22 Представьте себе вращающуюся проходную дверь. В каком случае труднее проскочить через неё: когда она вращается медленно или быстро? :-)

Как опять-таки показывает опыт, зависимость сопротивле-

ния R металлического проводника от температуры t с хорошей

точностью является линейной:

R = R0 (1 + t):

Здесь R0 сопротивление проводника при 0 C. График за-

висимости (3.68 ) является прямой линией (рис.3.50 ).

Множитель называется температурным коэффициентом сопротивления. Его значения для различных металлов и сплавов можно найти в таблицах.

Длина проводника l и его площадь поперечного сечения S при изменении температуры меняются несущественно. Выразим R и R0 через удельное сопротивление:

; R0

и подставим эти формулы в (3.68 ). Получим аналогичную зависимость удельного сопротивления от температуры:

0 (1 + t):

Коэффициент весьма мал (для меди, например, = 0;0043), так что температурной зависимостью сопротивления металла часто можно пренебречь. Однако в ряде случаев считаться с ней приходиться. Например, вольфрамовая спираль электрической лампочки раскаляется до такой степени, что её вольт-амперная характеристика оказывается существенно нелинейной.

Рис. 3.51. Вольт-амперная характеристика лампочки

Так, на рис. 3.51 приведена вольт-амперная характеристика автомобильной лампочки. Если бы лампочка представляла собой идеальный резистор, её вольт-амперная характеристика была прямой линией в соответствии с законом Ома. Эта прямая изображена синим пунктиром.

Однако по мере роста напряжения, приложенного к лампочке, график отклоняется от этой прямой всё сильнее и сильнее. Почему? Дело в том, что с увеличением напряжения ток через лампочку возрастает и больше разогревает спираль; сопротивление спирали поэтому также увеличивается. Следовательно, сила тока хотя и продолжит возрастать, но будет иметь всё меньшее и меньшее значение по сравнению с тем, которое предписывается ¾пунктирной¿ линейной зависимостью тока от напряжения.

Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси. В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила F = - m d υ d t , которая играет роль сторонней силы , то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью E ст поля сторонних сил: E ст = - m e d υ d t .

Следовательно, в цепи при торможении катушки возникает электродвижущая сила ℰ, равная ℰ = E ст l = - m e d υ d t l , где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q , равный q = ∫ I d t = 1 R ∫ ℰ d t = m e l υ 0 R .

Здесь I мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ 0 – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен: e m = l υ 0 R q .

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен e = 1,60218 ċ 10 - 19 Кл, а его удельный заряд есть e m = 1,75882 ċ 10 11 Кл / кг.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость υ ¯ т теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость υ ¯ д дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме S υ ¯ д Δ t .

Число таких электронов равно nS υ ¯ д Δ t , где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд Δ q = e n S υ ¯ д Δ t . Отсюда следует: I = Δ q Δ t = e n S υ ¯ д. или υ ¯ д = I e n S

Концентрация n атомов в металлах находится в пределах 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости υ ¯ д упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом, средняя скорость υ ¯ д упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости υ ¯ т их теплового движения (υ ¯ д << υ ¯ т) . Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.



Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа υ ¯ д Δ t сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3ċ10 8 м/с . Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE , в результате чего он приобретает ускорение e m E . Поэтому к концу свободного пробега дрейфовая скорость электрона равна υ д = (υ д) max = e E m τ , где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа υ ¯ д равно половине максимального значения: υ ¯ д = 1 2 (υ д) max = 1 2 e E m τ .

Рассмотрим проводник длины l и сечением S с концентрацией электронов n . Ток в проводнике может быть записан в виде: I = e n S υ ¯ д = 1 2 e 2 τ n S m E = e 2 τ n S 2 m l U , где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно: R = 2 m e 2 n τ l S , а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями: ρ = 2 m e 2 n τ ; ν = 1 ρ = e 2 n τ 2 m .

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R , где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение ρ ~ T , в то время как из эксперимента получается зависимость ρ ~ T . Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре T кр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni 3 Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения T кр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями T кр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.




Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.


Опыт Э.Рикке В этих опытах электрический ток пропускали в течении года через три прижатых друг к другу, хорошо отшлифованных цилиндра - медный, алюминиевый и снова медный. Общий заряд, прошедший за это время через цилиндры, был очень велик (около 3,5*10 6 Кл). После окончания было установлено, что имеются лишь незначительные следы взаимного проникновения металлов, которые не превышают результатов обычной диффузии атомов в твёрдых телах. Измерения, проведённые с высокой степенью точности, показали, что масса каждого из цилиндров осталась неизменной. Поскольку массы атомов меди и алюминия существенно отличаются друг от друга, то масса цилиндров должна была бы заметно измениться, если бы носителями заряда были ионы.


Следовательно, свободными носителями заряда в металлах являются не ионы. Огромный заряд, который прошёл через цилиндры, был перенесён, очевидно, такими частицами, которые одинаковы и в меди, и в алюминии. Как известно, такие частицы входят в состав атомов всех веществ - это электроны. Естественно предположить, что ток в металлах осуществляют именно свободные электроны.


Опыт Т.Стюарта и Р.Толмена Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.





6. У всех металлов с увеличением температуры растет и сопротивление. R=R 0 (1+at) где a - температурный коэффициент; R 0 – удельное сопротивление и сопротивление металлического проводника; и R – удельное сопротивление проводника и сопротивление проводника при температуре t.


В 1911 году голландский физик Камерлинг- Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю.


Область применения 1. получение сильных магнитных полей; 2.мощные электромагниты со сверхпроводящей обмоткой в ускорителях и генераторах. В настоящий момент в энергетике существует большая проблема - большие потери электроэнергии при передаче ее по проводам. Возможное решение проблемы: при сверхпроводимости сопротивление проводников приблизительно равно 0 и потери энергии резко уменьшаются.

Металлы в твёрдом состоянии, как известно, имеют кристаллическое строение. Частицы в кристаллах расположены в определённом порядке, образуя пространственную (кристаллическую) решётку.

В узлах кристаллической решётки металла расположены положительные ионы, а в пространстве между ними движутся свободные электроны. Свободные электроны не связаны с ядрами своих атомов (рис. 53).

Рис. 53. Кристаллическая решётка металла

Отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов решётки . Поэтому в обычных условиях металл электрически нейтрален. Свободные электроны в нём движутся беспорядочно. Но если в металле создать электрическое поле, то свободные электроны начнут двигаться направленно под действием электрических сил. Возникнет электрический ток. Беспорядочное движение электронов при этом сохраняется, подобно тому как сохраняется беспорядочное движение в стайке мошкары, когда под действием ветра она перемещается в одном направлении.

Итак, электрический ток в металлах представляет собой упорядоченное движение свободных электронов .

Мандельштам Леонид Исаакович (1879-1944)
Российский физик, академик. Внёс существенный вклад в развитие радиофизики и радиотехники.

Папалекси Николай Дмитриевич (1880-1947)
Российский физик, академик. Занимался исследованиями в области радиотехники, радиофизики, радиоастрономии.

Доказательством того, что ток в металлах обусловлен электронами, явились опыты физиков нашей страны Леонида Исааковича Мандельштама и Николая Дмитриевича Папалекси, а также американских физиков Бальфура Стюарта и Роберта Толмена.

Скорость движения самих электронов в проводнике под действием электрического поля невелика - несколько миллиметров в секунду, а иногда и еще меньше. Но как только в проводнике возникает электрическое поле, оно с огромной скоростью, близкой к скорости света в вакууме (300 000 км/с), распространяется по всей длине проводника.

Одновременно с распространением электрического поля все электроны начинают двигаться в одном направлении по всей длине проводника. Так, например, при замыкании цепи электрической лампы в упорядоченное движение приходят и электроны, имеющиеся в спирали лампы.

Понять это поможет сравнение электрического тока с течением воды в водопроводе, а распространения электрического поля - с распространением давления воды. При подъёме воды в водонапорную башню давление (напор) воды очень быстро распространяется по всей водопроводной системе. Когда мы открываем кран, то вода уже находится под давлением и сразу начинает течь. Но из крана течёт та вода, которая была в нём, а вода из башни дойдёт до крана много позднее, так как движение воды происходит с меньшей скоростью, чем распространение давления.

Когда говорят о скорости распространения электрического тока в проводнике, то имеют в виду скорость распространения по проводнику электрического поля.

Электрический сигнал, посланный, например, по проводам из Москвы во Владивосток (s = 8000 км), приходит туда примерно через 0,03 с.

Вопросы

  1. Как объяснить, что в обычных условиях металл электрически нейтрален?
  2. Что происходит с электронами металла при возникновении в нём электрического поля?
  3. Что представляет собой электрический ток в металле?
  4. Какую скорость имеют в виду, когда говорят о скорости распространения электрического тока в проводнике?

Задание

Используя Интернет, найдите, с какой скоростью движутся электроны в металлах. Сравните её со скоростью света.