Т 50 60 130 технические характеристики. Устройство и техническая характеристика оборудования ооо 'лукойл–волгоградэнерго' волжская тэц


Теплофикационная паровая турбина Т-50/60-130 предназначена для привода электрического генератора и имеет два теплофикационных отбора для отпуска тепла на отопление. Как и другие турбины мощностью 30-60 МВт, она предназначена для установки на ТЭЦ средних и небольших городов. Давление как в отопительных, так и в производственном отборе поддерживается регулирующими поворотными диафрагмами, установленными в ЦНД.

Турбина рассчитана для работы при следующих номинальных параметрах:

· давление перегретого пара – 3.41 МПа;

· температура перегретого пара - 396° С;

· номинальная мощность турбины - 50 МВт.

Последовательность технологического процесса рабочего тела заключается в следующем: пар, сгенерированный в котле, по паропроводам направляется в цилиндр высокого давления турбины, отработав на всех ступенях ЦВД поступает в ЦНД после чего поступает в конденсатор. В конденсаторе отработавший пар конденсируется за счет тепла отданного охлаждающей воде, которая имеет свой циркуляционный контур (цирк. вода), далее, при помощи конденсатных насосов, основной конденсат направляется в систему регенерации. В эту систему входят 4 ПНД, 3 ПВД и деаэратор. Система регенерации предназначена для подогрева питательной воды на входе в котел до определенной температуры. Эта температура имеет фиксированное значение и указывается в паспорте турбины.

Принципиальная тепловая схема является одной из основных схем электростанции. Такая схема дает представление о типе электростанции и принципе ее работы, раскрывая суть технологического процесса выработки энергии, а также характеризует техническую оснащенность и тепловую экономичность станции. Она необходима для расчета теплового и энергетического балансов установки.

На данной схеме показаны 7 отборов, два из которых являются также и теплофикационными, т.е. предназначены для подогрева сетевой воды. Дренажи с подогревателей сбрасываются либо в предыдущий подогреватель, либо с помощью дренажных насосов в точку смешения. После того как основной конденсат прошел 4 ПНД, он попадает в деаэратор. Основное значение которого заключается не в том чтобы подогреть воду, а в том чтобы очистить ее от кислорода, который вызывает коррозию металлов трубопроводов, экранных труб, труб пароперегревателей и другого оборудования.

Основные элементы и условные обозначения:

К- (конденсатор)

КУ- котельная установка

ЦВД- цилиндр высокого давления

ЦНД- цилиндр низкого давления

ЭГ – электрический генератор

ОЭ – охладитель эжектора

ПС – подогреватель сетевой

ПВК – пиковый водогрейный котел

ТП - тепловой потребитель

КН – конденсатный насос

ДН – дренажный насос

ПН – питательный насос

ПНД – подогреватель высокого давления

ПВД – подогреватель низкого давления

Д - деаэратор

Схема.1 Тепловая схема турбины Т50/60-130


Таблица 1.1. Номинальные значения основных параметров турбины

Таблица 1.2. Параметры пара в камере отбора

Подогреватель Параметры пара в камере отбора Количество отбираемого пара, кгс/с
Давление, МПа Температура, °С
ПВД7 3,41 3,02
ПВД6 2,177 4,11
ПВД5 1,28 1,69
Деаэратор 1,28 1,16
ПНД4 0,529 2,3
ПНДЗ 0,272 2,97
ПНД2 0,0981 - 0,97
ПНД1 0,04 - 0,055

Теплофикационные турбины мощностью 40-100 МВт

Теплофикационные турбины мощностью 40-100 МВт на начальные параметры пара 130 кгс/см 2 , 565ºС спроектированы в виде единой серии, объединенной общими основными решениями, единством конструкции и широкой унификацией узлов и деталей.

Турбина Т-50-130 с двумя отопительными отборами пара на 3000 об/мин, номинальной мощностью 50 МВт. В дальнейшем номинальная мощность турбины была увеличена до 55 МВт с одновременным улучшением гарантии по экономичности турбины.

Турбина Т-50-130 выполнена двухцилиндровой и имеет однопоточный выхлоп. Все отборы, регенеративные и отопительные, вместе с выхлопным патрубком размещены в одном цилиндре низкого давления. В цилиндре высокого давления пар расширяется до давления верхнего регенеративного отбора (около 34 кгс/см 2), в цилиндре низкого давления – до давления нижнего отопительного отбора

Для турбины Т-50-130 оптимальным явилось применение двухвенечного регулирующего колеса с ограниченным изоэнтропийным перепадом и выполнение первой группы ступеней с малым диаметром. Цилиндр высокого давления всех турбин имеет 9 ступеней - регулирующую и 8 ступеней давления.

Последующие ступени расположенные в цилиндре среднего или низкого давления, имеют больший объемный расход пара и выполнены с большими диаметрами.

Все ступени турбин серии имеют аэродинамически отработанные профили, для регулирующей ступени ЧВД принято облопачивание Московского энергетической института с радиальным профилированием сопловой и рабочих решеток.

Облопачивание ЧВД и ЧСД выполнено с радиальными и осевыми усиками, что позволило уменьшить зазоры в проточной части.

Цилиндр высокого давления выполнен противоточным относительно цилиндра среднего давления, что позволило применить один упорный подшипник и жесткую муфту при сохранении относительно небольших осевых зазоров в проточной части как ЦВД, так и ЦСД (или ЦНД у турбин 50 МВт).

Выполнению теплофикационных турбин с одним упорным подшипником способствовало достигнутое в турбинах уравновешивание основной части осевого усилия в пределах каждого отдельного ротора и передачи оставшегося, ограниченного по величине усилия на подшипник, работающий в обе стороны. В теплофикационных турбинах, в отличие от конденсационных турбин, осевые усилия определяются не только расходом пара, но и давлениями в камерах отбора пара. Значительные изменения усилий по проточной части имеют место в турбинах с двумя отопительными отборами при изменении температуры наружного воздуха. Так как расход пара при этом остается неизменным, то это изменение осевого усилия практически не может быть компенсировано думмисом и полностью передается на упорный подшипник. Выполненное на заводе исследование переменного режима работы турбины, а также раздвоение

Министерство общего и профессионального образования

Российской Федерации

Новосибирский Государственный Технический Университет

Кафедра тепловых и электрических станций

КУРСОВОЙ ПРОЕКТ

по теме: Расчёт тепловой схемы энергоблока на базе теплофикационной турбины Т – 50/60 – 130.

Факультет: ФЭН

Группа: ЭТ З – 91у

Выполнил:

Студент - Шмидт А.И.

Проверил:

Преподаватель - Бородихин И.В.

Отметка о защите:

г. Новосибирск

2003 год

Введение…………………………………………………………………………....2

1. Построение графиков тепловых нагрузок…………………………………….2

2. Определение параметров расчетной схемы блока……………………………3

3. Определение параметров дренажей подогревателей системы регенерации и параметров пара в отборах……………………………………………………..5

4. Определение расходов пара ……………………………………………………7

5. Определение расходов пара нерегулируемых отборов ………………………8

6. Определение коэффициентов недовыработки………………………………...11

7. Действительный расход пара на турбину……………………………………...11

8. Выбор парогенератора………………………………...………………………..12

9. Расход электроэнергии на собственные нужды……………………………….12

10. Определение технико-экономических показателей…………………………..14

Заключение………………………………………………………………………….15

Используемая литература …………………………………………………………15

Приложение: рис.1 – График тепловой нагрузки

рис.2 – Тепловая схема блока

Р, S – Диаграмма воды и водяного пара

Введение.

В данной работе представлен расчёт Теловой схемы энергоблока (на основе теплофикационной турбины Т – 50/60 – 130 ТМЗ и котлоагрегата Е – 420 – 140 ТМ

(ТП – 81), который может быть расположен на ТЭЦ в городе Иркутске. Спроектировать ТЭЦ в г. Новосибирске. Основное топливо – Назаровский бурый уголь. Мощность турбины 50 МВт, начальное давление 13 МПа и температура перегретого пара 565 С 0 , без промперегрева t П.В. = 230 С 0 , Р К = 5 КПа, a тж = 0,6. Привязка к данному городу, расположенному в Сибирском регионе, обуславливает выбор топлива из ближайшего угольного бассейна (Назаровский угольный бассейн), а так же выбор расчётной температуры окружающего воздуха.

Принципиальная тепловая схема с указанием параметров пара и воды и полученные в результате ее расчета значения энергетических показателей определяют уровень технического совершенства энергоблока и электростанций, а также в значительной мере их экономические показатели. ПТС является основной технологической схемой проектируемой электростанции позволяющей по заданным энергетическим нагрузкам определить расходы пара и воды во всех частях установки, ее энергетические показатели. На основе ПТС определяют технические характеристики и выбирают тепловое оборудование, разрабатывают развернутую (детальную) тепловую схему энергоблоков и электростанции в целом.

По ходу выполнения работы производится построение графиков тепловых нагрузок, построение процесса в hS – диаграмме, расчёт сетевых подогревателей и системы регенерации, а так же рассчитаны основные технико – экономические показатели.

1. Построение графиков тепловых нагрузок.

Графики тепловых нагрузок представлены в виде номограмм (рис. 1):

a. график изменения тепловой нагрузки, зависимость тепловой нагрузки турбины Q T , МВт от температуры окружающего воздуха t вз, С 0 ;

b. температурный график качественного регулирования отпуска электроэнергии – зависимость температур прямой и обратной сетевой воды t пс, t ос, С 0 от t вз, С 0 ;

c. годовой график тепловой нагрузки – зависимость тепловой нагрузки турбины Q т, МВт от количества часов работы за отопительный период t, ч/год;

d. график продолжительности стояния температуры воздуха t вз, С 0 в годовом разрезе.

Максимальная тепловая мощность 1 блока , которая обеспечивается «Т» отборами турбины, МВт, согласно паспорту турбины равна 80 МВт. Максимальная тепловая мощность блока, которая обеспечивается так же пиковым водогрейным котлом, МВт

, (1.1)

Где a ТЭЦ – коэффициент теплофикации, a ТЭЦ =0,6

МВт

Тепловая нагрузка (мощность) горячего водоснабжения, МВт оценивается по формуле:

МВт

Наиболее характерные температуры для графика изменения тепловой нагрузки (рис.1а) и температурного графика качественного регулирования:

t вз = +8С 0 – температура воздуха, соответствующая началу и концу отопительного сезона:

t = +18C 0 – расчетная температура, при которой наступает состояние теплового равновесия.

t вз = -40С 0 – расчетная температура воздуха для Красноярска.

На графиках, представленных на рис.1г и 1в время отопительного периода t не превышает 5500 ч/год.

бар. Падения давления в Т-отборе равно: бар, после падения давления равно: Р Т1 = 2,99 бар равна C 0 , недогрев dt = 5С 0 . Максимально возможная температура подогрева сетевой воды С 0

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРИФИКАЦИИ СССР

ГЛАВНОЕ ТЕХНИЧЕСКОЕ УПРАВЛЕНИЕ ПО ЭКСПЛУАТАЦИИ ЭНЕРГОСИСТЕМ

УТВЕРЖДАЮ:

Заместитель начальника Главтехуправления

ТИПОВАЯ

ЭНЕРГЕТИЧЕСКАЯ ХАРАКТЕРИСТИКА ТУРБОАГРЕГАТА

Т-50-130 ТМЗ

РД 34.30.706

УДК 621.165-18

Составлено Сибтехэнерго с участием Московского головного предприятия "Союзтехэнерго"

ПРИЛОЖЕНИЕ

1. Типовая энергетическая характеристика турбоагрегата T-50-130 ТМЗ составлена на базе тепловых испытаний двух турбин (проведенных Южтехэнерго на Ленинградской ТЭЦ-14 и Сибтехэнерго на Усть-Каменогорской ТЭЦ) и отражает среднюю экономичность прошедшего капитальный ремонт турбоагрегата, работающего по заводской расчетной тепловой схеме (график T-1) и при следующих условиях, принятых за номинальные:

Давление и температура свежего пара перед стопорными клапанами турбины - соответственно - 130 кгс/см2* и 555 °С;

Максимально допустимый расход свежего пара - 265 т/ч;

Максимально допустимые расходы пара через переключаемый отсек и ЧНД - соответственно 165 и 140 т/ч; предельные значения расходов пара через определенные отсеки соответствуют техническим условиям ТУ;

Давление отработавшего пара:

а) для характеристики конденсационного режима c постоянным давлением и характеристик работы с отборами для двух - и одноступенчатого подогрева сетевой воды - 0,05 кгс/см2;

б) для характеристики конденсационного режима при постоянном расходе и температуре охлаждающей воды в соответствии с тепловой характеристикой конденсатора К при W =7000 м3/ч и Электросила";

Диапазон регулирования давления в верхнем теплофикационном отборе - 0,6-2,5 кгс/см2, а в нижнем - 0,5-2,0 кгс/см2;

Нагрев сетевой воды в теплофикационной установке - 47 °С.

Положенные в основу настоящей энергетической характеристики данные испытаний обработаны с применением "Таблиц теплофизических свойств воды и водяного пара" (Изд-во стандартов, 1960).

Конденсат греющего пара подогревателей высокого давления сливается каскадно в ПВД № 5, а из него подается в деаэратор 6 кгс/см2. При давлении пара в камере III отбора ниже 9 кгс/см2 конденсат греющего пара из ПВД № 5 направляется в ПНД № 4. При этом, если давление пара в камере II отбора выше 9 кгс/см2, конденсат греющего пара из ПВД № 6 направляется в деаэратор 6 кгс/см2.

Конденсат греющего пара подогревателей низкого давления сливается каскадно в ПНД № 2, из него сливными насосами подается в линию основного конденсата за ПНД № 2. Конденсат греющего пара из ПНД № 1 сливается в конденсатор.

Верхний и нижний подогреватели сетевой воды подключаются соответственно к VI и VII отборам турбины. Конденсат греющего пара верхнего подогревателя сетевой воды подается в линию основного конденсата за ПНД № 2, а нижнего - в линию основного конденсата за ПНД № 1.

2. В состав турбоагрегата, наряду с турбиной, входит следующее оборудование:

Генератор типа ТВ-60-2 завода "Электросила" с водородным охлаждением;

Четыре подогревателя низкого давления: ПНД № 1 и ПНД № 2 типа ПН, ПНД № 3 и ПНД № 4 типа ПН;

Три подогревателя высокого давления: ПВД № 5 типа ПВМ, ПВД № 6 типа ПВМ, ПВД № 7 типа ПВМ;

Поверхностный двухходовой конденсатор К;

Два основных трехступенчатых эжектора ЭПА и один пусковой (постоянно в работе находится один основной эжектор);

Два подогревателя сетевой воды (верхний и нижний) ПСС;

Два конденсатных насоса 8КсД-6х3 с приводом от электродвигателей мощностью по 100 кВт (постоянно в работе находится один насос, другой - резерве);

Три конденсатных насоса подогревателей сетевой воды 8КсД-5х3 с приводом от электродвигателей мощностью 100 кВт каждый (в работе находится два насоса, один - резерве).

3. При конденсационном режиме работы с отключенным регулятором давления полный расход тепла брутто и расход свежего пара в зависимости от мощности на выводах генератора аналитически выражается следующими уравнениями:


При постоянном давлении пара в конденсаторе Р 2 = 0,05 кгс/см2 (график Т-22, б)

Q 0 = 10,3 + 1,985 + 0,195 ( - 45,44) Гкал/ч; (1)

D 0 = 10,8 + 3,368 + 0,715 ( - 45,44) т/ч; (2)

При постоянных расходе (W = 7000 м3/ч) и температуре ( = 20 °С) охлаждающей воды (график Т-22, а);

Q 0 = 10,0 + 1,987 + 0,376 ( - 45,3) Гкал/ч; (3)

D 0 = 8,0 + 3,439 + 0,827 ( - 45,3) т/ч. (4)

Расходы тепла и свежего пара для заданной в условиях эксплуатации мощности определяются по приведенным выше зависимостям с последующим введением необходимых поправок (графики T-41, Т-42, Т-43); эти поправки учитывают отклонения эксплуатационных условий от номинальных (от условий характеристики).

Система поправочных кривых практически охватывает весь диапазон возможных отклонений условий эксплуатации турбоагрегата от номинальных. Это обеспечивает возможность анализа работы турбоагрегата в условиях электростанции.

Поправки рассчитаны для условия сохранения постоянной мощности на выводах генератора. При наличии двух отклонений и более условий эксплуатации турбогенератора от номинальных поправки алгебраически суммируются.

4. При режиме с теплофикационными отборами турбоагрегат может работать с одно-, двух - и трехступенчатым подогревом сетевой воды. Соответствующие типовые диаграммы режимов приведены на графиках Т-33 (а-г), Т-33А, Т-34 (а-к), Т-34А и Т-37.

На диаграммах указаны условия их построения и приведены правила пользования.

Типовые диаграммы режимов позволяют непосредственно определить для принятых исходных условий (, , ) расход пара на турбину.

На графиках Т-33 (а-г) и Т-34 (а-к) изображены диаграмма режимов, выражающие зависимость D 0 = f (, ) при определенных значениях давлений в регулируемых отборах.

Следует отметить, что диаграммы режимов для одно - и двухступенчатого подогрева сетевой воды, выражающие зависимость D 0 = f (, , ) (графики Т-33А и Т-34А), менее точны из-за определенных допущений, принятых при их построении. Эти диаграммы режимов могут быть рекомендованы для пользования при ориентировочных расчетах. При их использовании следует иметь в виду, что на диаграммах не указаны четко границы, определяющие все возможные режимы (по предельным расходам пара через соответствующие отсеки проточной части турбины и предельным давлениям в верхнем и нижнем отборах).

Для более точного определения значения расхода пара на турбину по заданным тепловой и электрической нагрузке и давлению пара в регулируемой отборе, а также определения зоны допустимых режимов работы следует пользоваться диаграммами режимов, представленными на графиках Т-33 (а-г) и Т-34 (а-к).

Удельные расходы тепла на производство электроэнергии для соответствующих режимов работы следует определять непосредственно по графикам Т-23 (а-г) - для одноступенчатого подогрева сетевой воды и Т-24 (а-к) - для двухступенчатого подогрева сетевой воды.

Эти графики построены по результатам специальных расчетов с использованием характеристик отсеков проточной части турбины и теплофикационной установки и не содержат неточностей, появляющихся при построении диаграмм режимов. Расчет удельных расходов тепла на выработку электроэнергии с использованием диаграмм режимов дает менее точный результат.

Для определения удельных расходов тепла на производство электроэнергии, а также расходов пара на турбину по графикам Т-33 (а-г) и Т-34 (а-к) при давлениях в регулируемых отборах для которых непосредственно не приводятся графики, следует использовать метод интерполяции.

Для режима работы с трехступенчатым подогревом сетевой воды удельный расход тепла на производство электроэнергии следует определять по графику Т-25, который рассчитан по следующей зависимости:

ккал/(кВт·ч), (5)

где Q пр - постоянные прочие тепловые потери, для турбин 50 МВт, принимаемые равными 0,61 Гкал/ч, согласно "Инструкции и методическим указаниям по нормированию удельных расходов топлива на тепловых электростанциях" (БТИ ОРГРЭС, 1966).

На графиках Т-44 приведены поправки к мощности на выводах генератора при отклонении условий работы турбоагрегата от номинальных. При отклонении давления отработавшего пара в конденсаторе от номинального значения поправка к мощности определяется по сетке поправок на вакуум (график Т-43).

Знаки поправок соответствуют переходу от условий построения диаграммы режимов к эксплуатационным.

При наличии двух отклонений и более условий работы турбоагрегата от номинальных поправки алгебраически суммируются.

Поправки к мощности на параметры свежего пара и температуру обратной сетевой воды соответствуют данным заводского расчета.

Для условия сохранения постоянным отпускаемого количества тепла потребителю (Q т =const) при изменении параметров свежего пара необходимо к мощности внести дополнительную поправку, учитывающую изменение расхода пара в отбор вследствие изменения энтальпии пара в регулируемом отборе. Эта поправка определяется по следующим зависимостям:

При работе по электрическому графику и неизменном расходе пара на турбину:

кВт; (7)

При работе по тепловому графику:

кг/ч; (9)

Энтальпия пара в камерах регулируемых теплофикационных отборов определяется по графикам Т-28 и Т-29.

Температурный напор подогревателей сетевой воды принят по расчетным данным ТМЗ и определяется по относительному недогреву по графику Т-27.

При определении теплоиспользования подогревателей сетевой воды переохлаждение конденсата греющего пара принимается равным 20 °С.

При определении количества тепла, воспринимаемого встроенным пучком (для трехступенчатого подогрева сетевой воды), температурный напор принимается равным 6 °С.

Электрическая мощность, развиваемая по теплофикационному циклу за счет отпуска тепла из регулируемых отборов, определяется из выражения

N тф = W тф · Q т МВт, (12)

где W тф - удельная выработка электроэнергии по теплофикационному циклу при соответствующих режимах работы турбоагрегата определяется по графику T-21.

Электрическая мощность, развиваемая по конденсационному циклу определяется как разность

Nкн = Nтф МВт. (13)

5. Методика определения удельного расхода тепла на выработку электроэнергии для различных режимов работы турбоагрегата при отклонении заданных условий от номинальных объясняется следующими примерами.

Пример 1. Конденсационный режим с отключенным регулятором давления.

Дано: = 40 МВт, P 0 = 125 кгс/см2, t 0 = 550 °С, Р 2 = 0,06 кгс/см2; тепловая схема - расчетная.

Требуется определить расход свежего пара и удельный расход тепла брутто при заданных условиях ( = 40 МВт).

В табл. 1 приводится последовательность расчета.

Пример 2. Режим работы с регулируемыми отборами пара при двух - и одноступенчатом подогреве сетевой воды.

А. Режим работы по тепловому графику

Дано: = 60 Гкал/ч; Pтв = 1,0 кгс/см2; Р 0 = 125 кгс/см2; t 0 = 545 °С, t2 = 55 °С; подогрев сетевой воды - двухступенчатый; тепловая схема - расчетная; остальные условия - номинальные.

Требуется определить мощность на выводах генератора, расход свежего пара и удельный расход тепла брутто при заданных условиях ( = 60 Гкал/ч).

В табл. 2 приводится последовательность расчета.

Режим работы при одноступенчатом подогреве сетевой воды рассчитывается аналогично.

Таблица 1

Показатель

Обозначение

Размерность

Способ определения

Полученное значение

Расход свежего пара на турбину при номинальных условиях

График Т-22 или уравнение (2)

Расход тепла на турбину при номинальных условиях

График Т-22 или уравнение (1)

Удельный расход тепла при номинальных условиях

ккал/(кВт·ч)

График Т-22 или Q 0/

Поправка к расходу пара на отклонение заданных условий от номинальных:

на давление свежего пара

График T-41

на температуру свежего пара

График T-41

График T-41

Суммарная

Поправки к удельному расходу тепла на отклонение заданных условий от номинальных:

на давление свежего пара

График Т-42

на температуру свежего пара

График Т-42

на давление отработавшего пара

График Т-42

Суммарная

Saq т

Расход свежего пара при заданных условиях

Удельный расход тепла брутто при заданных условиях

q т

ккал/(кВт·ч)

Таблица 2

Показатель

Обозначение

Размерность

Способ определения

Полученное значение

Расход пара на турбину при номинальных условиях

График Т-34, в

Мощность на выводах генератора при номинальных условиях

График Т-34, в

Поправки к мощности на отклонение заданных условий от номинальных:

на давление свежего пара

основная

График Т-44, а

дополнительная

Уравнение (8)

на температуру свежего пара

основная

График Т-44, б

дополнительная

Уравнение (9)

на температуру обратной сетевой воды

График Т-44, в

Суммарная

SDN т

Мощность на выводах генератора при заданных условиях

Поправки к расходу свежего пара на отклонение параметров свежего пара от номинальных

на давление