Перспективы развития мировой энергетики. Проблемы и перспективы развития электроэнергетики Перспективы развития кабельных энергетических систем


На современном этапе остро стоит проблема модернизации энергетического хозяйства. Устаревшие технологии сжигания угля, мазута, газа, высокий уровень сработанности оборудования приводят к превышению затрат топлива и огромным выбросам вредных веществ в атмосферу. Основная доля электроэнергии используется для потребности промышленности, где очень большие потери электроэнергии в результате бесхозяйственности и применения неэффективных технологий производства.

Проблема! Главной причиной, ограничивающей развитие энергетики, является экологическая. За 2012 год выбросы загрязняющих атмосферу веществ предприятиями по производству и распределению электроэнергии составили 592,1 тыс. тонн, или 39,1 % всех выбросов стационарными источниками загрязнения. Предложите пути решения этой проблемы.

В 2013 году вредные выбросы предприятий электроэнергетики уменьшились на 13,6 % за счет неработающей Углегорской ТЭС, однако остаются самыми значительными среди всех видов промышленной деятельности – 384,1 тыс. тонн, или 35,8 % областного объема.

Таблица 1. Удельный выброс загрязняющих веществ от ТЭС Нашего

края

Учитывая среднее значение удельного выброса от ТЭС, а также тот факт, что население области потребляет 7859,4 млн. кВт- год электроэнергии, можно определить, что при выработке этого количества электроэнергии на ТЭС в атмосферный воздух поступает 141,5 тыс. т загрязняющих веществ в

год, таких как оксид углерода, азота, диоксид серы, пыль неорганическая, тяжелые металлы, парниковые газы (табл. 1).

Для уменьшения выбросов вредных веществ в атмосферу и эффективного использования энергии как приоритетного направления энергетической политики


региона необходимо: увеличивать объемы использования природного газа на ТЭС за счет уменьшения его затрат в металлургии и других отраслях хозяйства; повышать эффективность использования топлива разных видов; внедрять эффективные и экономически рентабельные очистительные устройства и их системы; совершенствовать структуру промышленности; внедрять энергосберегающие технологии, оборудование и бытовые приборы.

ПОВТОРИМ ГЛАВНОЕ

Электроэнергетика – базовая отрасль экономики, которая вырабатывает, передает и трансформирует электроэнергию.

Почти вся электроэнергия Нашего края вырабатывается на тепловых электростанциях (ТЭС). Электростанции соединяются между собой ЛЭП и образуют энергосистемы.


Среди тепловых электростанций выделяют конденсационные и

теплоэлектроцентрали (ТЭЦ) .

Большие ТЭС размещают в районах добычи топлива, вблизи рек, которые дают воду для охлаждения. Передавать электроэнергию по линиям электропередач гораздо дешевле, чем перевозить топливо.

Наш край учится использовать альтернативные источники энергии. Ветер и солнечную энергию – для выработки электричества. Биомассу: древесные опилки, солому – для отопления.

Среди важнейших причин, ограничивающих развитие энергетики, относится экологическая .

ВОПРОСЫ И ЗАДАНИЯ 1. Что входит в отраслевой состав электроэнергетики? 2. Каково значение электроэнергетики в хозяйстве региона? 3. Что такое ТЭЦ, ТЭС? В чем их отличие? 4. Почему в Донбассе были построены только тепловые электростанции? 5. Какие нетрадиционные виды энергии используются в нашем регионе? 6. Что такое энергосистема? В чем ее особенности? 7. Каковы проблемы и перспективы развития электроэнергетики нашего края? 8. Подготовьте учебный проект «Нетрадиционные виды энергии» 9. Определите, сколько стоит 1 кВт ч электроэнергии. Посмотрите по счетчику, какое количество электроэнергии ваша семья потребляет в сутки. Сколько это стоит? Проведите аналогичные расчеты за месяц, год. Определите, какие домашние электроприборы потребляют наибольшее количество электроэнергии. Как программа энергосбережения может быть реализована в вашем доме? Разработайте «домашние мероприятия» по энергосбережению.

Современное развитие экономики остро выявило основные проблемы развития энергетического комплекса. Эра углеводородов медленно, но верно подходит к своему логическому завершению. Ей на смену должны прийти инновационные технологии, с которыми связываются основные перспективы энергетики .

Проблемы энергетического комплекса

Пожалуй, одной из важнейших проблем энергетического комплекса можно считать высокую стоимость энергии, приводящую, в свою очередь, к удорожанию себестоимости выпускаемой продукции. Несмотря на то, что в последние годы активно ведутся разработки, способные позволить использование , ни одна низ них на сегодняшний момент не способна полностью вытеснить углеводороды с мировой энергетической арены. Альтернативные технологии – дополнение к традиционным источникам, но не их замена, по крайней мере, сейчас.

В условиях России проблема усугубляется еще и состоянием упадка энергетического комплекса. Электрогенерирующие комплексы находятся не в самом лучшем состоянии, многие электростанции физически разрушаются. В результате стоимость электроэнергии не снижается, а постоянно возрастает.

Долгое время мировое энергетическое сообщество делало ставку на атом, но это направление развития также можно назвать тупиковым. В европейских странах наблюдается тенденция к постепенному отказу от АЭС. Несостоятельность энергии атома подчеркивается еще и тем, что за долгие десятилетия развития она так и не смогла вытеснить углеводороды.

Перспективы развития

Как уже отмечалось, перспективы развития энергетики , в первую очередь, связываются с разработкой эффективных альтернативных источников. Наиболее изученными направлениями в этой области являются:

  • Биотопливо.
  • Ветроэнергетика.
  • Геотермальная энергетика.
  • Гелиоэнергетика.
  • Термоядерная энергетика (УТС).
  • Водородная энергетика.
  • Приливная энергетика.

Ни одно из этих направлений не способно решить проблему энергетического кризиса, когда простого дополнения старых источников энергии альтернативными уже недостаточно. Разработки ведутся в разных направлениях и находятся на различных стадиях своего развития. Тем не менее, уже можно очертить круг технологий, которые способны положить начало :

  • Вихревые теплогенераторы. Такие установки используются достаточно давно, найдя свое применение в теплоснабжении домов. Прокачиваемая через систему трубопроводов рабочая жидкость нагревается до 90 градусов. Несмотря на все преимущества технологии, она еще далека от окончательного завершения разработок. Например, в последнее время активно изучается возможность использования в качестве рабочей среды не жидкости, а воздуха.
  • Холодный ядерный синтез. Еще одна технология, развивающаяся примерно с конца 80-х годов прошлого века. В ее основе лежит идея получения ядерной энергии без сверхвысоких температур. Пока направление находится на стадии лабораторных и практических исследований.
  • На стадии промышленных образцов находятся магнитомеханические усилители мощности, использующие в своей работе магнитное поле Земли. Под его воздействием увеличивается мощность генератора и увеличивается количество получаемой электроэнергии.
  • Очень перспективными представляются энергетические установки, в основе которых лежит идея динамической сверхпроводимости. Суть идеи проста – при определенной скорости возникает динамическая сверхпроводимость, позволяющая генерировать мощное магнитное поле. Исследования в этой области идут довольно давно, накоплен немалый теоретический и практический материал.

Это только крошечный перечень инновационных технологий, каждая из которых обладает достаточным потенциалом развития. В целом, мировое научное сообщество способно развивать не только альтернативные источники энергии, которые уже можно назвать старыми, но и по-настоящему инновационные технологии.

Нельзя не отметить, что в последние годы все чаще появляются технологии, которые еще недавно казались фантастическими. Развитие подобных источников энергии способно полностью преобразить привычный мир. Назовем только самые известные из них:

  • Нанопроводниковые аккумуляторы.
  • Технологии беспроводной передачи энергии.
  • Атмосферная электроэнергетика и т. д.

Следует ожидать, что в ближайшие годы появятся и другие технологии, разработка которых позволит отказаться от использования углеводородов и, что немаловажно, снизить себестоимость энергии.





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.

Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.

Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако лишь сегодня человечество избавляется от идеологических представлений о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.

При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн. кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика . Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика . Это отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.

Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце - природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.

Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия» для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды.

Введение

Электроэнергетика – это комплексная отрасль хозяйства, которая включает в свой состав отрасль по производству электроэнергии и передачу ее до потребителя. Электроэнергетика является важнейшей базовой отраслью промышленности России. От уровня ее развития зависит все народное хозяйство страны, а так же уровень развития научно-технического прогресса в стране.

Специфической особенностью электроэнергетики является то, что её продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и по размеру (с учетом потерь) и во времени.

Представить себе жизнь без электрической энергии уже невозможно. Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос, наш быт. Её специфическое свойство – возможность превращаться практически во все другие виды энергии (топливную, механическую, звуковую, световую и т.п.)

В промышленности электроэнергия применяется как для приведения в действие различных механизмов, так и непосредственно в технологических процессах. Работа современных средств связи основана на применении электроэнергии.

Электроэнергия в быту является основной частью обеспечения комфортабельной жизни людей.

Огромную роль электроэнергия играет в транспортной промышленности. Электротранспорт не загрязняет окружающую среду.


1. Значение электроэнергетики в экономике Российской Федерации

Стабильное развитие экономики невозможно без постоянно развивающейся энергетики. Электроэнергетика является основой функционирования экономики и жизнеобеспечения. Надежное и эффективное функционирование электроэнергетики, бесперебойное снабжение потребителей – основа поступательного развития экономики страны и неотъемлемый фактор обеспечения цивилизованных условий жизни всех ее граждан. Электроэнергетика является элементом ТЭК. ТЭК России является мощной экономико-производственной системой. Он определяющим образом влияет на состояние и перспективы развития национальной экономики, обеспечивая 1/5 производства валового внутреннего продукта, 1/3 объема промышленного производства и доходов консолидированного бюджета России, примерно половину доходов федерального бюджета, экспорта и валютных поступлений.

При развитии энергетики огромное значение придается вопросам правильного размещения электроэнергетического хозяйства. Важнейшим условием рационального размещения электрических станций является всесторонний учет потребности в электроэнергии всех отраслей народного хозяйства страны и нужд населения, а также каждого экономического района на перспективу.

Одним из принципов размещения электроэнергетики на современном этапе развития рыночного хозяйства является строительство преимущественно небольших по мощности тепловых электростанций, внедрение новых видов топлива, развитие сети дальних высоковольтных электропередач.

Существенная особенность развития и размещения электроэнергетики – широкое строительство теплоэлектроцентралей (ТЭЦ) для теплофикации различных отраслей промышленности и коммунального хозяйства. ТЭЦ размещают в пунктах потребления пара или горячей воды, поскольку передача тепла по трубопроводам экономически целесообразна лишь на небольшом расстоянии.

Важным направлением в развитии электроэнергетики является строительство гидроэлектростанций. Особенность современного развития электроэнергетики – сооружение электроэнергетических систем, их объединение и создание Единой энергетической системы (ЕЭС) страны.

2. Характеристика самых крупных тепловых и атомных электростанций

Тепловые электростанции (ТЭС). В России около 700 крупных и средних ТЭС. Они производят до 70% электроэнергии. ТЭС используют органическое топливо – уголь, нефть, газ, мазут, сланцы, торф. Тепловые электростанции ориентированы на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Электростанции, работающие на мазуте, располагаются преимущественно в центрах нефтеперерабатывающей промышленности. Крупными тепловыми электростанциями являются Березовская ГРЭС-1 и ГРЭС-2, работающие на углях Канско-Ачинского бассейна, Сургутская ГРЭС-1 и ГРЭС-2, Уренгойская ГРЭС – на газе.

Преимущества тепловых электростанций: относительно свободное размещение, связанное с широким распространением топливных ресурсов в России; способность вырабатывать электроэнергию без сезонных колебаний (в отличие от ГЭС). К Недостаткам относятся: использование невозобновимых топливных ресурсов; низкий КПД; крайне неблагоприятное воздействие на окружающую среду (тепловые электростанции всего мира выбрасывают в атмосферу ежегодно 200–250 млн. т золы и около 60 млн. т сернистого ангидрида; кроме того они поглощают огромное количество кислорода).

Атомные электростанции (АЭС). АЭС используют транспортабельное топливо. АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или в местах, где выявленные ресурсы минерального топлива ограничены. Кроме этого, атомная электроэнергетика относится к отраслям исключительно высокой наукоемкости.

Доля АЭС в суммарной выработке электроэнергии в России составляет пока 12%, в США – 20%, Великобритании – 18.9%, Германии – 34%, Бельгии – 65%, Франции – свыше 76%.

Сейчас в России действуют девять АЭС общей мощностью 20.2 млн кВт: в Северо-Западном районе – Ленинградская АЭС, в ЦЧР – Курская и Нововоронежская АЭС, в ЦЭР – Смоленская, Калининская АЭС, Поволжье – Балаковская АЭС, Северном – Кольская АЭС, Урале – Белоярская АЭС, Дальнем Востоке – Билибинская АЭС.

Достоинства АЭС: их можно строить в любом районе; коэффициент использования установленной мощности равен 80%; при нормальных условиях функционирования они меньше наносят вред окружающей среде, чем иные виды электростанций; не поглощают кислород. Недостатки АЭС: трудности в захоронении радиоактивных отходов (д ля их вывоза со станции сооружаются контейнеры с мощной защитой и системой охлаждения; захоронение производится в земле на больших глубинах в геологически стабильных пластах); катастрофические последствия аварий на наших АЭС вследствие несовершенной системы защиты; тепловое загрязнение используемых АЭС водоемов. С экономической точки зрения ядерная энергетика специфична. Ей свойственны, по крайней мере, две кардинальные особенности. Первая особенность связана с большой ролью капиталовложений, которые вносят основной вклад в стоимость электроэнергии. Из чего следует необходимость особо тщательно и обоснованно учитывать роль капиталовложений. Вторая определяется спецификой использования ядерного топлива, которая существенно отличается от той, что присуща обычному химическому топливу. К сожалению, до сих пор не сложилось единого мнения о том, как следует учитывать эти особенности в экономических расчетах. На примере российской ядерной энергетики можно проанализировать вышеназванные особенности с точки зрения современных особенностей производства электроэнергии.

Несмотря на то, что экономические проблемы ядерной энергетики были обстоятельно изложены еще в монографии, тем не менее, существовавший до середины 80-х годов оптимизм в прогнозах ее развития определялся в основном представлениями об умеренной капиталоемкости АЭС, зачастую продиктованными соображениями политического плана.

Известно, что удельные капиталовложения в АЭС значительно выше, чем в обычные электростанции, особенно это касается АЭС с быстрыми реакторами. Это связано в первую очередь со сложностью технологической схемы АЭС: используются 2-х и даже 3-х контурные системы отвода тепла из реактора.

Создается специальная система гарантированного аварийного расхолаживания.

Предъявляются высокие требования к конструкторским материалам (ядерная чистота).

Изготовление оборудования и его монтаж ведутся в особо строгих, тщательно контролируемых условиях (реакторная технология).

К тому же термический к.п.д. на используемых в настоящее время в России АЭС с тепловыми реакторами заметно ниже, чем на обычных тепловых станциях.

Другим важным вопросом является то, что в твэлах внутри реактора постоянно содержится значительное количество ядерного топлива, необходимого для создания критической массы. В некоторых публикациях \например по данным Батова, Корякина Ю.И., 1969 г.\, предлагается включать в капиталовложения стоимость первой загрузки ядерного топлива. Если следовать этой логике, то в капвложения следует включать не только топливо, находящееся в самом реакторе, но и занятое во внешнем топливном цикле. Для реакторов, использующих замкнутый цикл с регенерацией топлива, таких как быстрые реакторы, общее количество «замороженного» таким образом топлива может в 2–3 раза, а то и больше превышать критическую массу. Все это значительно увеличит и без того значительную составляющую капвложений и соответственно ухудшит расчетные экономические показатели АЭС.

Такой подход нельзя считать правильным. Ведь в любом производстве одни элементы оборудования находятся в постоянной эксплуатации, а другие материальные средства службы регулярно заменяются новыми. Однако, если этот срок не слишком велик, их стоимость не причисляют к капвложениям. Эти затраты учитываются в качестве обычных, текущих. В случае с твэлами в пользу этого свидетельствует период их использования, который не превышает нескольких месяцев.

Важным является также вопрос о цене ядерного топлива. Если речь идет только об уране, то его стоимость определяется затратами на добычу, извлечение из руды, изотопное обогащение (если таковое необходимо).

Если топливом является плутоний, который используется для быстрых реакторов, то в общем случае следует различать два режима: замкнутый, когда плутония достаточно для обеспечения потребностей развивающейся энергетики, и конверсионный, когда его не хватает и наряду с ним используется 235 U. Для случая конверсионного цикла цена плутония должна определяться из сопоставления с известной ценой 235 U. В любом быстром реакторе можно использовать как плутониевое, так и урановое топливо. Поэтому при экономическом сопоставлении влияния эффекта вида топлива на капитальную составляющую стоимости электроэнергии можно исключить. Достаточно приравнять между собой лишь непосредственные затраты на топливо (топливные составляющие) в том и другом случае. По оценкам специалистов цена плутония превосходит цену 235 U примерно на 30%. Для плутония это обстоятельство важно, поскольку нарабатываемый плутоний как побочный продукт приносит большой доход.

Как известно, на данный период времени, перед отраслью стоит ряд проблем. Наиболее важной из которых является экологическая проблема. В России выброс вредных веществ в окружающую среду на единицу продукции превышает аналогичный показатель на западе в 6-10 раз. Так, В 2000 г. объемы выбросов вредных веществ в атмосферу составляли 3,9 млн тонн (98% к уровню 1999 г.), в том числе выбросы от ТЭС - 3,5 млн тонн (90%). На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24%. Таким образом, ТЭС являются главной причиной формирования кислотных осадков.

Крупнейшими загрязнителями атмосферы являются Рефтинская ГРЭС (г. Асбест, Свердловская обл.) -360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Приморская (г. Лучегорск, Приморский край) - 77 тыс. тонн, Верхнетагильская ГРЭС (Свердловская обл.) - 72 тыс. тонн

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России. Экстенсивное развитие производства, ускоренное наращивание огромных мощностей привело к тому, что на экологический фактор не уделялось достаточное количество внимания. После катастрофы на Чернобыльской АЭС под влиянием общественности в России были существенно приторможены темпы развития атомной энергетики. Конечно, это неудивительно. Ведь авария на этой станции (Украина, севернее Киева) 26 апреля 1986 года по долговременным последствиям стала самой масштабной катастрофой, которая произошла за весь исторический период существования человечества. Впервые сотни тысяч людей столкнулись с реальной опасностью “мирного атома”, неизбежностью возникновения чрезвычайной ситуации в условиях НТР, с неготовностью общества и государства к их предотвращению и сведению к минимуму их последствий.

Непосредственно после аварии общая площадь загрязнения составила 200 тысяч км.2. Площадь загрязнения, где устойчиво сохраняется повышенный уровень загрязнения- 10 тысяч км 2 . Здесь расположено около 640 населенных пунктов с населением свыше 230 тысяч человек. Радиоактивное загрязнение окружающей среды в пределах Украины, Белоруссии, некоторых областях России, остается крайне острой проблемой. Поэтому существовавшая ранее программа ускоренного достижения суммарной мощности АЭС в100 млн. квт (США уже достигли этого показателя) была фактически законсервирована. Огромные прямые убытки повлекло закрытие всех строившихся в России АЭС, станции, признанные зарубежными экспертами как вполне надежные, были заморожены даже в стадии монтажа оборудования. Однако последнее время положение меняется: в июне 93-го года был пущен четвертый энергоблок Балаковской АЭС, в ближайшие несколько лет планируется пуск еще нескольких атомных станций и дополнительных энергоблоков принципиально новой конструкции.

Таким образом, одной из немаловажных проблем энергетики является экологическая, которая непосредственно связана с использованием оборудования на электростанциях. Так, неправильное, небрежное обращение с техникой может привести к непредвиденным последствиям. На мой взгляд, государство должно в первую очередь уделять внимание именно этой проблеме, обеспечивать совершенную систему защиты всего населения от радиоактивных выбросов.

Другой нерешённой проблемой в сфере электроэнергетики является проблема использования устаревшего оборудования. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования, как известно, ведется недопустимо низкими темпами и в явно недостаточном объеме.

Следующей нерешённой проблемой электроэнергетики на данный момент стала проблема финансирования и развал хозяйственных связей.

Что же касается перспективы развития электроэнергетики России, то можно сделать вывод о том, что без нерешённых проблем процветание данной отрасли просто невозможно! На мой взгляд, правительство должно в первую очередь уделять внимание именно энергетике России, которая нуждается в выполнении определённых задач.

1. Снижение энергоемкости производства.

2. Сохранение единой энергосистемы России.

3. Повышение коэффициента используемой мощности э/с.

4. Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены, возможный отказ от клиринга. 5. Скорейшее обновление парка э/с.

6. Приведение экологических параметров э/с к уровню мировых стандартов. На данный период времени для решения всех этих мер принята правительственная программа "Топливо и энергия", представляющая собой сборник конкретных рекомендаций по эффективному управлению отраслью и ее переходу от планово-административной к рыночной системе инвестирования.

Системными прогнозами развития всего электроэнергетического комплекса занимаются немногочисленные группы экспертов, которые разрабатывают так называемые «модели» всего ТЭК.

Так, структура производства электроэнергии по сценарию «Стратегия инерции» представлена на данном графике.

График №1.

При этом, эксперты считают, что инвестиции, требуемые для развития электрогенерации и электросетевого хозяйства до 2020 г. (с учетом компенсации выбывающих мощностей), составляют еще 457 млрд долл. в ценах 2005 г. (420 млрд долл., по оценкам Минпромэнерго). Таким образом, суммарно требуемые капитальные вложения в отечественный ТЭК в 2006-2020 гг. могут превысить 1 трлн долл. (I,12) При этом способность ТЭК мобилизовать подобные средства далеко не очевидна, особенно если иметь в виду возможное снижение цен на нефть и газ на мировых рынках и вероятность прихода частных инвесторов в электроэнергетику. В случае неудачи в электроэнергетике, «энергетический голод» будет обостряться, а темпы экономического роста замедлятся. Но даже успешная мобилизация таких огромных средств частично за счет отвлечения их из менее капиталоемких секторов экономики приведет к снижению темпов экономического роста и усилению перегрузки инвестиционного комплекса экономики, который ответит (и уже отвечает) удорожанием строительства единичной мощности.

Поэтому о процветании энергетики в России можно судить исходя из основных положений о том, каковы будут инвесторы и какое количество средств будет затрачено на развитие данной отрасли.