Logarithmic equation! Paglutas ng mga logarithmic equation. Paano malutas, na may mga halimbawa


Ang mga logarithm, tulad ng anumang mga numero, ay maaaring idagdag, ibawas at baguhin sa lahat ng paraan. Ngunit dahil ang logarithms ay hindi eksaktong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Talagang kailangan mong malaman ang mga patakarang ito - kung wala ang mga ito, hindi malulutas ang isang seryosong problema sa logarithmic. Bilang karagdagan, napakakaunti sa kanila - maaari mong matutunan ang lahat sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng mga logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: log a x at mag-log a y. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay katumbas ng logarithm ng quotient. Mangyaring tandaan: pangunahing punto dito - magkatulad na batayan. Kung magkaiba ang mga dahilan, hindi gagana ang mga patakarang ito!

Tutulungan ka ng mga formula na ito na kalkulahin ang isang logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Log 6 4 + log 6 9.

Dahil ang logarithms ay may parehong mga base, ginagamit namin ang sum formula:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log 2 48 − log 2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log 3 135 − log 3 5.

Muli ang mga base ay pareho, kaya mayroon kaming:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi hiwalay na kinakalkula. Ngunit pagkatapos ng mga pagbabago, ganap na normal na mga numero ang nakuha. Marami ang binuo sa katotohanang ito mga pagsubok. Oo, ang mga ekspresyong tulad ng pagsubok ay inaalok sa lahat ng kaseryosohan (kung minsan ay halos walang pagbabago) sa Pinag-isang Estado na Pagsusuri.

Pagkuha ng exponent mula sa logarithm

Ngayon pasimplehin natin ng kaunti ang gawain. Paano kung ang batayan o argumento ng isang logarithm ay isang kapangyarihan? Pagkatapos ang exponent ng degree na ito ay maaaring alisin mula sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Madaling makita na ang huling tuntunin ay sumusunod sa unang dalawa. Ngunit mas mahusay na tandaan ito pa rin - sa ilang mga kaso ay makabuluhang bawasan nito ang dami ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x> 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran, i.e. Maaari mong ipasok ang mga numero bago mag-sign ang logarithm sa logarithm mismo. Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log 7 49 6 .

Tanggalin natin ang antas sa argumento gamit ang unang formula:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Gawain. Hanapin ang kahulugan ng expression:

[Caption para sa larawan]

Tandaan na ang denominator ay naglalaman ng logarithm, na ang base at argumento ay eksaktong mga kapangyarihan: 16 = 2 4 ; 49 = 7 2. Mayroon kaming:

[Caption para sa larawan]

Sa tingin ko ang huling halimbawa ay nangangailangan ng ilang paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali ay nagtatrabaho lamang kami sa denominator. Iniharap namin ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga kapangyarihan at kinuha ang mga exponents - nakakuha kami ng isang "tatlong palapag" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay naglalaman ng parehong numero: log 2 7. Dahil log 2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga tuntunin ng aritmetika, ang apat ay maaaring ilipat sa numerator, na kung ano ang ginawa. Ang resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga dahilan? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong pundasyon ay sumagip. Bumalangkas tayo sa anyo ng isang teorama:

Hayaang ibigay ang logarithm log a x. Pagkatapos ay para sa anumang numero c ganyan c> 0 at c≠ 1, ang pagkakapantay-pantay ay totoo:

[Caption para sa larawan]

Sa partikular, kung ilalagay natin c = x, nakukuha namin ang:

[Caption para sa larawan]

Mula sa pangalawang pormula ay sumusunod na ang base at argumento ng logarithm ay maaaring palitan, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. lumalabas ang logarithm sa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga problema na hindi malulutas sa lahat maliban sa paglipat sa isang bagong pundasyon. Tingnan natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log 5 16 log 2 25.

Tandaan na ang mga argumento ng parehong logarithms ay naglalaman ng eksaktong mga kapangyarihan. Kunin natin ang mga tagapagpahiwatig: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Ngayon ay "baligtarin" natin ang pangalawang logarithm:

[Caption para sa larawan]

Dahil ang produkto ay hindi nagbabago kapag muling inaayos ang mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay hinarap ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log 9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

[Caption para sa larawan]

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

[Caption para sa larawan]

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng solusyon ay kinakailangan upang kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga sumusunod na formula ay makakatulong sa amin:

Sa unang kaso, ang numero n nagiging tagapagpahiwatig ng antas na nakatayo sa argumento. Numero n maaaring maging anumang bagay, dahil isa lamang itong halaga ng logarithm.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Iyan ang tawag dito: ang pangunahing logarithmic identity.

Sa katunayan, ano ang mangyayari kung ang numero b itaas sa ganoong kapangyarihan na ang bilang b sa kapangyarihang ito ay nagbibigay ng numero a? Tama iyon: makukuha mo ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang natigil dito.

Tulad ng mga formula para sa paglipat sa isang bagong base, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang kahulugan ng expression:

[Caption para sa larawan]

Tandaan na ang log 25 64 = log 5 8 - kinuha lang namin ang parisukat mula sa base at argumento ng logarithm. Isinasaalang-alang ang mga patakaran para sa pagpaparami ng mga kapangyarihan sa parehong batayan, nakukuha namin ang:

[Caption para sa larawan]

Kung sinuman ang hindi nakakaalam, ito ay isang tunay na gawain mula sa Unified State Exam :)

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na halos hindi matatawag na mga katangian - sa halip, ang mga ito ay mga kahihinatnan ng kahulugan ng logarithm. Patuloy silang lumilitaw sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa mga "advanced" na mga mag-aaral.

  1. log a a Ang = 1 ay isang logarithmic unit. Tandaan minsan at para sa lahat: logarithm sa anumang base a mula sa baseng ito ay katumbas ng isa.
  2. log a 1 = 0 ay logarithmic zero. Base a maaaring maging anuman, ngunit kung ang argumento ay naglalaman ng isa, ang logarithm ay katumbas ng zero! kasi a Ang 0 = 1 ay isang direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito, at lutasin ang mga problema.

Algebra ika-11 baitang

Paksa: "Mga paraan para sa paglutas ng mga logarithmic equation"

Layunin ng aralin:

pang-edukasyon: pagbuo ng kaalaman tungkol sa sa iba't ibang paraan paglutas ng mga logarithmic equation, mga kasanayan upang mailapat ang mga ito sa bawat isa tiyak na sitwasyon at pumili ng anumang paraan upang malutas;

pagbuo: pagbuo ng mga kasanayan sa pagmamasid, paghahambing, paggamit ng kaalaman sa isang bagong sitwasyon, tukuyin ang mga pattern, pangkalahatan; pagbuo ng mga kasanayan ng mutual control at self-control;

pang-edukasyon: pagpapaunlad ng isang responsableng saloobin sa gawaing pang-edukasyon, matulungin na pang-unawa sa materyal sa aralin, at maingat na pagkuha ng tala.

Uri ng aralin: aralin sa pagpapakilala ng bagong materyal.

"Ang pag-imbento ng logarithms, habang binabawasan ang gawain ng astronomer, ay nagpalawak ng kanyang buhay."
French mathematician at astronomer na si P.S. Laplace

Pag-unlad ng aralin

I. Pagtatakda ng layunin ng aralin

Ang pinag-aralan na kahulugan ng logarithm, mga katangian ng logarithms at logarithmic function ay magbibigay-daan sa amin upang malutas ang mga logarithmic equation. Ang lahat ng logarithmic equation, gaano man sila kakomplikado, ay nireresolba gamit ang mga pare-parehong algorithm. Titingnan natin ang mga algorithm na ito sa aralin ngayon. Hindi marami sa kanila. Kung master mo ang mga ito, ang anumang equation na may logarithms ay magiging posible para sa bawat isa sa iyo.

Isulat ang paksa ng aralin sa iyong kuwaderno: “Mga pamamaraan para sa paglutas ng mga logarithmic equation.” Inaanyayahan ko ang lahat na makipagtulungan.

II. Pag-update ng kaalaman sa sanggunian

Maghanda tayo sa pag-aaral ng paksa ng aralin. Lutasin mo ang bawat gawain at isulat ang sagot hindi mo kailangang isulat ang kundisyon. Magtrabaho nang magkapares.

1) Para sa anong mga halaga ng x ang kahulugan ng function:

(Ang mga sagot ay sinusuri para sa bawat slide at ang mga error ay inaayos)

2) Nagtutugma ba ang mga graph ng mga function?

3) Isulat muli ang equalities bilang logarithmic equalities:

4) Isulat ang mga numero bilang logarithms na may base 2:

5) Kalkulahin:

6) Subukang ibalik o dagdagan ang mga nawawalang elemento sa mga pagkakapantay-pantay na ito.

III. Panimula sa bagong materyal

Ang sumusunod na pahayag ay ipinapakita sa screen:

"Ang equation ay ang ginintuang susi na nagbubukas ng lahat ng mathematical sesames."
Modernong Polish na matematiko na si S. Kowal

Subukang bumalangkas ng kahulugan ng isang logarithmic equation. (Isang equation na naglalaman ng hindi alam sa ilalim ng logarithm sign).

Isaalang-alang natin ang pinakasimpleng logarithmic equation:logAx = b(kung saan ang a>0, a ≠ 1). Dahil ang logarithmic function ay tumataas (o bumababa) sa hanay ng mga positibong numero at kumukuha ng lahat ng tunay na halaga, pagkatapos ay sa pamamagitan ng root theorem ay sumusunod na para sa anumang b ang equation na ito ay may, at isa lamang, solusyon, at isang positibo.

Tandaan ang kahulugan ng logarithm. (Ang logarithm ng isang numero x sa base a ay isang tagapagpahiwatig ng kapangyarihan kung saan ang base a ay dapat na itaas upang makuha ang numerong x). Mula sa kahulugan ng logarithm ay agad itong sinusundan AV ay ganoong solusyon.

Isulat ang pamagat: Mga pamamaraan para sa paglutas ng mga logarithmic equation

1. Sa pamamagitan ng kahulugan ng logarithm.

Ito ay kung paano malulutas ang pinakasimpleng mga equation ng form.

Isaalang-alang natin No. 514(a)): Lutasin ang equation

Paano mo imungkahi na lutasin ito? (Sa pamamagitan ng kahulugan ng logarithm)

Solusyon. , Kaya 2x - 4 = 4; x = 4.

Sa gawaing ito, 2x - 4 > 0, mula noong > 0, kaya walang mga extraneous na ugat ang maaaring lumitaw, at hindi na kailangang suriin. Ang kundisyon 2x - 4 > 0 ay hindi kailangang isulat sa gawaing ito.

2. Potentization(transisyon mula sa logarithm ng isang ibinigay na expression sa expression na ito mismo).

Isaalang-alang natin No. 519(g): log5(x2+8)-log5(x+1)=3log5 2

Anong tampok ang napansin mo? (Ang mga base ay pareho at ang logarithms ng dalawang expression ay pantay.) Ano ang maaaring gawin? (Potentize).

Dapat itong isaalang-alang na ang anumang solusyon ay nakapaloob sa lahat ng x kung saan ang mga logarithmic na expression ay positibo.

Solusyon: ODZ:

Ang X2+8>0 ay isang hindi kinakailangang hindi pagkakapantay-pantay

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Palakihin natin ang orihinal na equation

nakukuha natin ang equation na x2+8= 8x+8

Lutasin natin ito: x2-8x=0

Sagot: 0; 8

Sa pangkalahatan paglipat sa isang katumbas na sistema:

Equation

(Ang sistema ay naglalaman ng isang kalabisan na kondisyon - isa sa mga hindi pagkakapantay-pantay ay hindi kailangang isaalang-alang).

Tanong para sa klase: Alin sa tatlong solusyong ito ang pinakanagustuhan mo? (Pagtalakay sa mga pamamaraan).

May karapatan kang magpasya sa anumang paraan.

3. Pagpapakilala ng bagong variable.

Isaalang-alang natin No. 520(g). .

Ano ang napansin mo? (Ito quadratic equation patungkol sa log3x) Ang iyong mga mungkahi? (Magpakilala ng bagong variable)

Solusyon. ODZ: x > 0.

Hayaan , pagkatapos ay ang equation ay kukuha ng anyo:. Discriminant D > 0. Mga ugat ayon sa teorama ni Vieta:.

Balik tayo sa kapalit: o.

Nang malutas ang pinakasimpleng logarithmic equation, nakukuha natin:

Sagot: 27;

4. Logarithm magkabilang panig ng equation.

Lutasin ang equation:.

Solusyon: ODZ: x>0, kunin ang logarithm ng magkabilang panig ng equation sa base 10:

Ilapat natin ang pag-aari ng logarithm ng isang kapangyarihan:

(logx + 3) logx = 4

Hayaan ang logx = y, pagkatapos (y + 3)y = 4

, (D > 0) mga ugat ayon sa teorama ni Vieta: y1 = -4 at y2 = 1.

Bumalik tayo sa kapalit, makakakuha tayo ng: lgx = -4,; lgx = 1, .

Sagot: 0.0001; 10.

5. Pagbawas sa isang base.

No. 523(c). Lutasin ang equation:

Solusyon: ODZ: x>0. Lumipat tayo sa base 3.

6. Functional-graphic na paraan.

509(d). Lutasin ang equation nang grapiko: = 3 - x.

Paano mo imungkahi na malutas? (Bumuo ng mga graph ng dalawang function y = log2x at y = 3 - x gamit ang mga puntos at hanapin ang abscissa ng mga punto ng intersection ng mga graph).

Tingnan ang iyong solusyon sa slide.

May paraan para maiwasan ang paggawa ng mga graph . Ito ay ang mga sumusunod : kung isa sa mga function y = f(x) tumataas, at ang iba pa y = g(x) bumababa sa pagitan ng X, pagkatapos ay ang equation f(x)= g(x) may hindi hihigit sa isang ugat sa pagitan ng X.

Kung may ugat, maaari itong hulaan.

Sa aming kaso, ang function ay tumataas para sa x>0, at ang function na y = 3 - x ay bumababa para sa lahat ng mga halaga ng x, kabilang ang para sa x>0, na nangangahulugan na ang equation ay walang higit sa isang ugat. Tandaan na sa x = 2 ang equation ay nagiging isang tunay na pagkakapantay-pantay, dahil .

« Tamang gamit maaaring matutunan ang mga pamamaraan
sa pamamagitan lamang ng paglalapat ng mga ito sa iba't ibang halimbawa».
Danish na mananalaysay ng matematika na si G. G. Zeiten

akoV. Takdang-Aralin

P. 39 isaalang-alang ang halimbawa 3, lutasin ang No. 514(b), No. 529(b), No. 520(b), No. 523(b)

V. Pagbubuod ng aralin

Anong mga paraan ng paglutas ng mga logarithmic equation ang tiningnan natin sa klase?

Sa susunod na mga aralin ay titingnan natin ang mas kumplikadong mga equation. Upang malutas ang mga ito, ang mga pinag-aralan na pamamaraan ay magiging kapaki-pakinabang.

Huling slide na ipinakita:

“Ano ang higit sa anumang bagay sa mundo?
kalawakan.
Ano ang pinakamatalinong bagay?
Oras.
Ano ang pinakamagandang bahagi?
Makamit mo ang gusto mo."
Thales

Nais kong makamit ng lahat ang kanilang nais. Salamat sa iyong kooperasyon at pag-unawa.

pangunahing katangian.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

magkatulad na batayan

Log6 4 + log6 9.

Ngayon pasimplehin natin ng kaunti ang gawain.

Mga halimbawa ng paglutas ng logarithms

Paano kung ang batayan o argumento ng isang logarithm ay isang kapangyarihan? Pagkatapos ang exponent ng degree na ito ay maaaring alisin mula sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x >

Gawain. Hanapin ang kahulugan ng expression:

Paglipat sa isang bagong pundasyon

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Gawain. Hanapin ang kahulugan ng expression:

Tingnan din ang:


Mga pangunahing katangian ng logarithm

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay katumbas ng 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Nikolaevich Tolstoy.

Mga pangunahing katangian ng logarithms

Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.


Mga halimbawa para sa logarithms

Mga expression ng logarithm

Halimbawa 1.
A). x=10ac^2 (a>0,c>0).

Gamit ang mga katangian 3.5 kinakalkula namin

2.

3.

4. saan .



Halimbawa 2. Hanapin ang x kung


Halimbawa 3. Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung




Mga pangunahing katangian ng logarithms

Ang mga logarithm, tulad ng anumang mga numero, ay maaaring idagdag, ibawas at baguhin sa lahat ng paraan. Ngunit dahil ang logarithms ay hindi eksaktong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Talagang kailangan mong malaman ang mga patakarang ito - kung wala ang mga ito, hindi malulutas ang isang seryosong problema sa logarithmic. Bilang karagdagan, napakakaunti sa kanila - maaari mong matutunan ang lahat sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng mga logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay katumbas ng logarithm ng quotient. Mangyaring tandaan: ang pangunahing punto dito ay magkatulad na batayan. Kung magkaiba ang mga dahilan, hindi gagana ang mga patakarang ito!

Tutulungan ka ng mga formula na ito na kalkulahin ang isang logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Dahil ang logarithms ay may parehong mga base, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi hiwalay na kinakalkula. Ngunit pagkatapos ng mga pagbabago, ganap na normal na mga numero ang nakuha. Maraming pagsubok ang nakabatay sa katotohanang ito. Oo, ang mga ekspresyong tulad ng pagsubok ay inaalok sa lahat ng kaseryosohan (kung minsan ay halos walang pagbabago) sa Pinag-isang Estado na Pagsusuri.

Pagkuha ng exponent mula sa logarithm

Madaling makita na ang huling tuntunin ay sumusunod sa unang dalawa. Ngunit mas mahusay na tandaan ito pa rin - sa ilang mga kaso ay makabuluhang bawasan nito ang dami ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran , ibig sabihin. Maaari mong ipasok ang mga numero bago mag-sign ang logarithm sa logarithm mismo. Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento gamit ang unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang denominator ay naglalaman ng logarithm, na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng ilang paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali ay nagtatrabaho lamang kami sa denominator.

Mga formula ng logarithm. Mga halimbawa ng solusyon sa Logarithms.

Iniharap namin ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga kapangyarihan at kinuha ang mga exponents - nakakuha kami ng isang "tatlong palapag" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay naglalaman ng parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga tuntunin ng aritmetika, ang apat ay maaaring ilipat sa numerator, na kung ano ang ginawa. Ang resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga dahilan? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong pundasyon ay sumagip. Bumalangkas tayo sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung itinakda namin ang c = x, makakakuha kami ng:

Mula sa pangalawang pormula ay sumusunod na ang base at argumento ng logarithm ay maaaring palitan, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. lumalabas ang logarithm sa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga problema na hindi malulutas sa lahat maliban sa paglipat sa isang bagong pundasyon. Tingnan natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay naglalaman ng eksaktong mga kapangyarihan. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon ay "baligtarin" natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago kapag muling inaayos ang mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay hinarap ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng solusyon ay kinakailangan upang kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga sumusunod na formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay isang logarithm value lamang.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Yan ang tawag dito: .

Sa katunayan, ano ang mangyayari kung ang numero b ay itinaas sa ganoong kapangyarihan na ang bilang b sa kapangyarihang ito ay nagbibigay ng bilang na a? Iyan ay tama: ang resulta ay ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang natigil dito.

Tulad ng mga formula para sa paglipat sa isang bagong base, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at argumento ng logarithm. Isinasaalang-alang ang mga patakaran para sa pagpaparami ng mga kapangyarihan na may parehong base, makakakuha tayo ng:

Kung sinuman ang hindi nakakaalam, ito ay isang tunay na gawain mula sa Unified State Exam :)

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na halos hindi matatawag na mga katangian - sa halip, ang mga ito ay mga kahihinatnan ng kahulugan ng logarithm. Patuloy silang lumilitaw sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa mga "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a ng base na iyon mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay naglalaman ng isa, ang logarithm ay katumbas ng zero! Dahil ang a0 = 1 ay isang direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito, at lutasin ang mga problema.

Tingnan din ang:

Ang logarithm ng b sa base a ay nagsasaad ng expression. Upang kalkulahin ang logarithm ay nangangahulugan na makahanap ng isang kapangyarihan x () kung saan ang pagkakapantay-pantay ay nasiyahan

Mga pangunahing katangian ng logarithm

Kinakailangang malaman ang mga katangian sa itaas, dahil halos lahat ng mga problema at mga halimbawa na may kaugnayan sa logarithms ay nalutas sa kanilang batayan. Pahinga kakaibang katangian ay maaaring makuha sa pamamagitan ng matematikal na pagmamanipula ng mga formula na ito

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Kapag kinakalkula ang formula para sa kabuuan at pagkakaiba ng mga logarithms (3.4) madalas kang nakakaharap. Ang natitira ay medyo kumplikado, ngunit sa isang bilang ng mga gawain sila ay kailangang-kailangan para sa pagpapasimple ng mga kumplikadong expression at pagkalkula ng kanilang mga halaga.

Mga karaniwang kaso ng logarithms

Ang ilan sa mga karaniwang logarithms ay ang mga kung saan ang base ay kahit sampu, exponential o dalawa.
Ang logarithm sa base sampu ay karaniwang tinatawag na decimal logarithm at simpleng tinutukoy ng lg(x).

Malinaw sa recording na ang mga basic ay hindi nakasulat sa recording. Halimbawa

Ang natural na logarithm ay isang logarithm na ang base ay isang exponent (na tinutukoy ng ln(x)).

Ang exponent ay 2.718281828…. Upang matandaan ang exponent, maaari mong pag-aralan ang panuntunan: ang exponent ay katumbas ng 2.7 at dalawang beses sa taon ng kapanganakan ni Leo Nikolaevich Tolstoy. Ang pag-alam sa panuntunang ito, malalaman mo ang eksaktong halaga ng exponent at ang petsa ng kapanganakan ni Leo Tolstoy.

At isa pang mahalagang logarithm sa base ng dalawa ay tinutukoy ng

Ang derivative ng logarithm ng isang function ay katumbas ng isang hinati ng variable

Ang integral o antiderivative logarithm ay tinutukoy ng relasyon

Ang ibinigay na materyal ay sapat para sa iyo upang malutas ang isang malawak na klase ng mga problema na may kaugnayan sa logarithms at logarithms. Upang matulungan kang maunawaan ang materyal, magbibigay lamang ako ng ilang karaniwang mga halimbawa mula sa kurikulum ng paaralan at mga unibersidad.

Mga halimbawa para sa logarithms

Mga expression ng logarithm

Halimbawa 1.
A). x=10ac^2 (a>0,c>0).

Gamit ang mga katangian 3.5 kinakalkula namin

2.
Sa pamamagitan ng pag-aari ng pagkakaiba ng logarithms mayroon tayo

3.
Gamit ang mga katangian 3.5 nahanap namin

4. saan .

Ang isang tila kumplikadong expression ay pinasimple upang mabuo gamit ang isang bilang ng mga panuntunan

Paghahanap ng mga halaga ng logarithm

Halimbawa 2. Hanapin ang x kung

Solusyon. Para sa pagkalkula, nalalapat kami sa huling termino 5 at 13 na mga katangian

Inilagay namin ito sa talaan at nagdadalamhati

Dahil ang mga base ay pantay, tinutumbasan namin ang mga expression

Logarithms. Entry level.

Hayaang ibigay ang halaga ng logarithms

Kalkulahin ang log(x) kung

Solusyon: Kumuha tayo ng logarithm ng variable upang isulat ang logarithm sa pamamagitan ng kabuuan ng mga termino nito


Ito ay simula pa lamang ng ating pagkakakilala sa logarithms at sa kanilang mga katangian. Magsanay ng mga kalkulasyon, pagyamanin ang iyong mga praktikal na kasanayan - malapit mo nang kailanganin ang kaalaman na makukuha mo upang malutas ang mga logarithmic equation. Ang pagkakaroon ng pag-aaral ng mga pangunahing pamamaraan para sa paglutas ng mga naturang equation, palawakin namin ang iyong kaalaman sa isa pang pantay na mahalagang paksa - logarithmic inequalities...

Mga pangunahing katangian ng logarithms

Ang mga logarithm, tulad ng anumang mga numero, ay maaaring idagdag, ibawas at baguhin sa lahat ng paraan. Ngunit dahil ang logarithms ay hindi eksaktong ordinaryong mga numero, may mga panuntunan dito, na tinatawag pangunahing katangian.

Talagang kailangan mong malaman ang mga patakarang ito - kung wala ang mga ito, hindi malulutas ang isang seryosong problema sa logarithmic. Bilang karagdagan, napakakaunti sa kanila - maaari mong matutunan ang lahat sa isang araw. Kaya simulan na natin.

Pagdaragdag at pagbabawas ng mga logarithms

Isaalang-alang ang dalawang logarithms na may parehong base: logax at logay. Pagkatapos ay maaari silang idagdag at ibawas, at:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Kaya, ang kabuuan ng logarithm ay katumbas ng logarithm ng produkto, at ang pagkakaiba ay katumbas ng logarithm ng quotient. Mangyaring tandaan: ang pangunahing punto dito ay magkatulad na batayan. Kung magkaiba ang mga dahilan, hindi gagana ang mga patakarang ito!

Tutulungan ka ng mga formula na ito na kalkulahin ang isang logarithmic expression kahit na ang mga indibidwal na bahagi nito ay hindi isinasaalang-alang (tingnan ang aralin na "Ano ang logarithm"). Tingnan ang mga halimbawa at tingnan:

Gawain. Hanapin ang halaga ng expression: log6 4 + log6 9.

Dahil ang logarithms ay may parehong mga base, ginagamit namin ang sum formula:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Gawain. Hanapin ang halaga ng expression: log2 48 − log2 3.

Ang mga base ay pareho, ginagamit namin ang formula ng pagkakaiba:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Gawain. Hanapin ang halaga ng expression: log3 135 − log3 5.

Muli ang mga base ay pareho, kaya mayroon kaming:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Tulad ng nakikita mo, ang orihinal na mga expression ay binubuo ng "masamang" logarithms, na hindi hiwalay na kinakalkula. Ngunit pagkatapos ng mga pagbabago, ganap na normal na mga numero ang nakuha. Maraming pagsubok ang nakabatay sa katotohanang ito. Oo, ang mga ekspresyong tulad ng pagsubok ay inaalok sa lahat ng kaseryosohan (kung minsan ay halos walang pagbabago) sa Pinag-isang Estado na Pagsusuri.

Pagkuha ng exponent mula sa logarithm

Ngayon pasimplehin natin ng kaunti ang gawain. Paano kung ang batayan o argumento ng isang logarithm ay isang kapangyarihan? Pagkatapos ang exponent ng degree na ito ay maaaring alisin mula sa sign ng logarithm ayon sa mga sumusunod na patakaran:

Madaling makita na ang huling tuntunin ay sumusunod sa unang dalawa. Ngunit mas mahusay na tandaan ito pa rin - sa ilang mga kaso ay makabuluhang bawasan nito ang dami ng mga kalkulasyon.

Siyempre, ang lahat ng mga patakarang ito ay may katuturan kung ang ODZ ng logarithm ay sinusunod: a > 0, a ≠ 1, x > 0. At isa pang bagay: matutong ilapat ang lahat ng mga formula hindi lamang mula kaliwa hanggang kanan, kundi pati na rin sa kabaligtaran , ibig sabihin. Maaari mong ipasok ang mga numero bago mag-sign ang logarithm sa logarithm mismo.

Paano malutas ang mga logarithms

Ito ang madalas na kinakailangan.

Gawain. Hanapin ang halaga ng expression: log7 496.

Tanggalin natin ang antas sa argumento gamit ang unang formula:
log7 496 = 6 log7 49 = 6 2 = 12

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang denominator ay naglalaman ng logarithm, na ang base at argumento ay eksaktong kapangyarihan: 16 = 24; 49 = 72. Mayroon kaming:

Sa tingin ko ang huling halimbawa ay nangangailangan ng ilang paglilinaw. Saan napunta ang logarithms? Hanggang sa pinakahuling sandali ay nagtatrabaho lamang kami sa denominator. Iniharap namin ang base at argumento ng logarithm na nakatayo doon sa anyo ng mga kapangyarihan at kinuha ang mga exponents - nakakuha kami ng isang "tatlong palapag" na bahagi.

Ngayon tingnan natin ang pangunahing bahagi. Ang numerator at denominator ay naglalaman ng parehong numero: log2 7. Dahil ang log2 7 ≠ 0, maaari nating bawasan ang fraction - 2/4 ay mananatili sa denominator. Ayon sa mga tuntunin ng aritmetika, ang apat ay maaaring ilipat sa numerator, na kung ano ang ginawa. Ang resulta ay ang sagot: 2.

Paglipat sa isang bagong pundasyon

Sa pagsasalita tungkol sa mga patakaran para sa pagdaragdag at pagbabawas ng mga logarithms, partikular kong binigyang-diin na gumagana lamang ang mga ito sa parehong mga base. Paano kung magkaiba ang mga dahilan? Paano kung hindi sila eksaktong mga kapangyarihan ng parehong bilang?

Ang mga formula para sa paglipat sa isang bagong pundasyon ay sumagip. Bumalangkas tayo sa anyo ng isang teorama:

Hayaang ibigay ang logarithm logax. Pagkatapos ay para sa anumang bilang c tulad na c > 0 at c ≠ 1, ang pagkakapantay-pantay ay totoo:

Sa partikular, kung itinakda namin ang c = x, makakakuha kami ng:

Mula sa pangalawang pormula ay sumusunod na ang base at argumento ng logarithm ay maaaring palitan, ngunit sa kasong ito ang buong expression ay "ibinalik", i.e. lumalabas ang logarithm sa denominator.

Ang mga formula na ito ay bihirang makita sa mga ordinaryong numerical expression. Posibleng suriin kung gaano kaginhawa ang mga ito kapag nilulutas ang mga logarithmic equation at hindi pagkakapantay-pantay.

Gayunpaman, may mga problema na hindi malulutas sa lahat maliban sa paglipat sa isang bagong pundasyon. Tingnan natin ang ilan sa mga ito:

Gawain. Hanapin ang halaga ng expression: log5 16 log2 25.

Tandaan na ang mga argumento ng parehong logarithms ay naglalaman ng eksaktong mga kapangyarihan. Kunin natin ang mga tagapagpahiwatig: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Ngayon ay "baligtarin" natin ang pangalawang logarithm:

Dahil ang produkto ay hindi nagbabago kapag muling inaayos ang mga kadahilanan, mahinahon naming pinarami ang apat at dalawa, at pagkatapos ay hinarap ang mga logarithms.

Gawain. Hanapin ang halaga ng expression: log9 100 lg 3.

Ang batayan at argumento ng unang logarithm ay eksaktong kapangyarihan. Isulat natin ito at alisin ang mga tagapagpahiwatig:

Ngayon, alisin natin ang decimal logarithm sa pamamagitan ng paglipat sa isang bagong base:

Pangunahing logarithmic na pagkakakilanlan

Kadalasan sa proseso ng solusyon ay kinakailangan upang kumatawan sa isang numero bilang isang logarithm sa isang naibigay na base. Sa kasong ito, ang mga sumusunod na formula ay makakatulong sa amin:

Sa unang kaso, ang numero n ay nagiging exponent sa argumento. Ang numero n ay maaaring maging anumang bagay, dahil ito ay isang logarithm value lamang.

Ang pangalawang formula ay talagang isang paraphrased na kahulugan. Yan ang tawag dito: .

Sa katunayan, ano ang mangyayari kung ang numero b ay itinaas sa ganoong kapangyarihan na ang bilang b sa kapangyarihang ito ay nagbibigay ng bilang na a? Iyan ay tama: ang resulta ay ang parehong numero a. Basahin muli ang talatang ito nang mabuti - maraming tao ang natigil dito.

Tulad ng mga formula para sa paglipat sa isang bagong base, ang pangunahing logarithmic identity ay minsan ang tanging posibleng solusyon.

Gawain. Hanapin ang kahulugan ng expression:

Tandaan na ang log25 64 = log5 8 - kinuha lamang ang parisukat mula sa base at argumento ng logarithm. Isinasaalang-alang ang mga patakaran para sa pagpaparami ng mga kapangyarihan na may parehong base, makakakuha tayo ng:

Kung sinuman ang hindi nakakaalam, ito ay isang tunay na gawain mula sa Unified State Exam :)

Logarithmic unit at logarithmic zero

Sa konklusyon, magbibigay ako ng dalawang pagkakakilanlan na halos hindi matatawag na mga katangian - sa halip, ang mga ito ay mga kahihinatnan ng kahulugan ng logarithm. Patuloy silang lumilitaw sa mga problema at, nakakagulat, lumikha ng mga problema kahit para sa mga "advanced" na mga mag-aaral.

  1. logaa = 1 ay. Tandaan minsan at para sa lahat: ang logarithm sa anumang base a ng base na iyon mismo ay katumbas ng isa.
  2. ang log 1 = 0 ay. Ang base a ay maaaring anuman, ngunit kung ang argumento ay naglalaman ng isa, ang logarithm ay katumbas ng zero! Dahil ang a0 = 1 ay isang direktang bunga ng kahulugan.

Iyon ang lahat ng mga pag-aari. Siguraduhing magsanay sa pagsasabuhay ng mga ito! I-download ang cheat sheet sa simula ng aralin, i-print ito, at lutasin ang mga problema.

Tulad ng alam mo, kapag nagpaparami ng mga expression na may mga kapangyarihan, ang kanilang mga exponents ay palaging nagdaragdag (a b *a c = a b+c). Ito batas sa matematika ay hinango ni Archimedes, at nang maglaon, noong ika-8 siglo, ang mathematician na si Virasen ay lumikha ng isang talahanayan ng mga integer exponents. Sila ang nagsilbi para sa karagdagang pagtuklas ng logarithms. Ang mga halimbawa ng paggamit ng function na ito ay matatagpuan halos kahit saan kung saan kinakailangan upang gawing simple ang masalimuot na multiplikasyon sa pamamagitan ng simpleng karagdagan. Kung gumugugol ka ng 10 minuto sa pagbabasa ng artikulong ito, ipapaliwanag namin sa iyo kung ano ang mga logarithms at kung paano gamitin ang mga ito. Sa simple at naa-access na wika.

Kahulugan sa matematika

Ang logarithm ay isang expression ng sumusunod na anyo: log a b=c, iyon ay, ang logarithm ng anumang hindi negatibong numero (iyon ay, anumang positibo) "b" sa base nito na "a" ay itinuturing na kapangyarihan "c ” kung saan kinakailangan na itaas ang base na “a” upang sa huli ay makuha ang halagang "b". Suriin natin ang logarithm gamit ang mga halimbawa, sabihin nating mayroong expression log 2 8. Paano mahahanap ang sagot? Ito ay napaka-simple, kailangan mong makahanap ng isang kapangyarihan na mula 2 hanggang sa kinakailangang kapangyarihan ay makakakuha ka ng 8. Pagkatapos gumawa ng ilang mga kalkulasyon sa iyong ulo, makuha namin ang numero 3! At totoo iyon, dahil ang 2 sa kapangyarihan ng 3 ay nagbibigay ng sagot bilang 8.

Mga uri ng logarithms

Para sa maraming mga mag-aaral ang paksang ito ay tila kumplikado at hindi maintindihan, ngunit sa katunayan ang mga logarithms ay hindi nakakatakot, ang pangunahing bagay ay upang maunawaan ang kanilang pangkalahatang kahulugan at tandaan ang kanilang mga katangian at ilang mga patakaran. Mayroong tatlong magkakahiwalay na uri ng logarithmic expression:

  1. Natural logarithm ln a, kung saan ang base ay ang Euler number (e = 2.7).
  2. Decimal a, kung saan ang base ay 10.
  3. Logarithm ng anumang numero b sa base a>1.

Ang bawat isa sa kanila ay nagpasya sa karaniwang paraan, na kinabibilangan ng pagpapasimple, pagbabawas at kasunod na pagbabawas sa isang logarithm gamit ang logarithmic theorems. Upang makuha ang tamang mga halaga ng logarithms, dapat mong tandaan ang kanilang mga katangian at ang pagkakasunud-sunod ng mga aksyon kapag nilulutas ang mga ito.

Mga panuntunan at ilang mga paghihigpit

Sa matematika, mayroong ilang mga patakaran-mga hadlang na tinatanggap bilang isang axiom, iyon ay, hindi sila napapailalim sa talakayan at ang katotohanan. Halimbawa, imposibleng hatiin ang mga numero sa zero, at imposible ring kunin ang pantay na ugat ng mga negatibong numero. Ang mga logarithm ay mayroon ding sariling mga panuntunan, na sumusunod kung saan madali mong matutunang gumana kahit na may mahaba at may kakayahang logarithmic na mga expression:

  • Ang base na "a" ay dapat palaging mas malaki kaysa sa zero, at hindi katumbas ng 1, kung hindi, mawawala ang kahulugan ng expression, dahil ang "1" at "0" sa anumang antas ay palaging katumbas ng kanilang mga halaga;
  • kung a > 0, pagkatapos ay a b >0, lumalabas na ang "c" ay dapat ding mas malaki sa zero.

Paano malutas ang mga logarithms?

Halimbawa, ang gawain ay ibinigay upang mahanap ang sagot sa equation na 10 x = 100. Ito ay napakadali, kailangan mong pumili ng isang kapangyarihan sa pamamagitan ng pagtaas ng numero sampu kung saan makakakuha tayo ng 100. Ito, siyempre, ay 10 2 = 100.

Ngayon, katawanin natin ang expression na ito sa logarithmic form. Nakukuha namin ang log 10 100 = 2. Kapag nilulutas ang mga logarithm, halos lahat ng mga aksyon ay nagsasama-sama upang mahanap ang kapangyarihan kung saan kinakailangan upang ipasok ang base ng logarithm upang makakuha ng isang naibigay na numero.

Upang tumpak na matukoy ang halaga ng isang hindi kilalang degree, kailangan mong matutunan kung paano magtrabaho sa isang talahanayan ng mga degree. Mukhang ganito:

Tulad ng nakikita mo, ang ilang mga exponent ay maaaring mahulaan nang intuitive kung mayroon kang teknikal na pag-iisip at kaalaman sa talahanayan ng multiplikasyon. Gayunpaman, para sa mas malalaking halaga kakailanganin mo ng power table. Maaari itong magamit kahit ng mga walang alam tungkol sa kumplikadong mga paksa sa matematika. Ang kaliwang column ay naglalaman ng mga numero (base a), itaas na hilera ang mga numero ay ang halaga ng kapangyarihan c kung saan itinataas ang bilang a. Sa intersection, ang mga cell ay naglalaman ng mga halaga ng numero na ang sagot (a c = b). Kunin natin, halimbawa, ang pinakaunang cell na may numerong 10 at parisukat ito, nakukuha natin ang halaga na 100, na ipinahiwatig sa intersection ng ating dalawang cell. Ang lahat ay napakasimple at madali na kahit na ang pinakatotoong humanist ay mauunawaan!

Mga equation at hindi pagkakapantay-pantay

Ito ay lumalabas na sa ilalim ng ilang mga kundisyon ang exponent ay ang logarithm. Samakatuwid, ang anumang mathematical numerical expression ay maaaring isulat bilang isang logarithmic equality. Halimbawa, ang 3 4 =81 ay maaaring isulat bilang base 3 logarithm ng 81 na katumbas ng apat (log 3 81 = 4). Para sa mga negatibong kapangyarihan ang mga patakaran ay pareho: 2 -5 = 1/32 isinulat namin ito bilang isang logarithm, nakukuha namin ang log 2 (1/32) = -5. Ang isa sa mga pinakakaakit-akit na seksyon ng matematika ay ang paksa ng "logarithms". Titingnan natin ang mga halimbawa at solusyon ng mga equation sa ibaba, kaagad pagkatapos pag-aralan ang kanilang mga katangian. Ngayon tingnan natin kung ano ang hitsura ng mga hindi pagkakapantay-pantay at kung paano makilala ang mga ito mula sa mga equation.

Dahil sa pagpapahayag ng sumusunod na anyo: log 2 (x-1) > 3 - ito ay hindi pagkakapantay-pantay ng logarithmic, dahil ang hindi kilalang halaga na "x" ay nasa ilalim ng tanda ng logarithm. At din sa pagpapahayag ng dalawang dami ay inihambing: ang logarithm ng nais na numero sa base ng dalawa ay mas malaki kaysa sa bilang tatlo.

Ang pinakamahalagang pagkakaiba sa pagitan ng mga logarithmic equation at hindi pagkakapantay-pantay ay ang mga equation na may logarithms (halimbawa - logarithm 2 x = √9) ay nagpapahiwatig ng isa o higit pang mga tiyak na numerical values ​​sa sagot, samantalang kapag nilulutas ang mga hindi pagkakapantay-pantay, sila ay tinukoy bilang isang rehiyon. mga katanggap-tanggap na halaga, at ang mga breakpoint ng function na ito. Bilang resulta, ang sagot ay hindi isang simpleng hanay ng mga indibidwal na numero, tulad ng sa sagot sa isang equation, ngunit isang tuluy-tuloy na serye o hanay ng mga numero.

Mga pangunahing teorema tungkol sa logarithms

Kapag nilulutas ang mga primitive na gawain ng paghahanap ng mga halaga ng logarithm, ang mga katangian nito ay maaaring hindi kilala. Gayunpaman, pagdating sa mga logarithmic equation o hindi pagkakapantay-pantay, una sa lahat, kinakailangan na malinaw na maunawaan at mailapat sa pagsasanay ang lahat ng mga pangunahing katangian ng logarithms. Titingnan natin ang mga halimbawa ng mga equation sa ibang pagkakataon, tingnan muna natin ang bawat property nang mas detalyado.

  1. Ang pangunahing pagkakakilanlan ay ganito ang hitsura: a logaB =B. Nalalapat lamang ito kapag ang a ay mas malaki sa 0, hindi katumbas ng isa, at ang B ay mas malaki sa zero.
  2. Ang logarithm ng produkto ay maaaring katawanin sa sumusunod na formula: log d (s 1 * s 2) = log d s 1 + log d s 2. Sa kasong ito kinakailangan ay: d, s 1 at s 2 > 0; a≠1. Maaari kang magbigay ng patunay para sa logarithmic formula na ito, na may mga halimbawa at solusyon. Hayaang mag-log a s 1 = f 1 at mag-log a s 2 = f 2, pagkatapos ay a f1 = s 1, a f2 = s 2. Nakukuha namin na s 1 * s 2 = a f1 *a f2 = a f1+f2 (mga katangian ng degrees ), at pagkatapos ay sa pamamagitan ng kahulugan: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, na siyang kailangang patunayan.
  3. Ang logarithm ng quotient ay ganito ang hitsura: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Ang theorem sa anyo ng isang formula ay tumatagal ng sumusunod na anyo: log a q b n = n/q log a b.

Ang formula na ito ay tinatawag na "property of the degree of logarithm." Ito ay kahawig ng mga katangian ng mga ordinaryong degree, at ito ay hindi nakakagulat, dahil ang lahat ng matematika ay batay sa natural na postulates. Tingnan natin ang patunay.

Hayaang mag-log a b = t, lumalabas na a t =b. Kung itataas natin ang parehong bahagi sa kapangyarihan m: a tn = b n ;

ngunit dahil a tn = (a q) nt/q = b n, samakatuwid mag-log a q b n = (n*t)/t, pagkatapos ay mag-log a q b n = n/q log a b. Ang teorama ay napatunayan.

Mga halimbawa ng mga problema at hindi pagkakapantay-pantay

Ang pinakakaraniwang uri ng mga problema sa logarithms ay mga halimbawa ng mga equation at hindi pagkakapantay-pantay. Ang mga ito ay matatagpuan sa halos lahat ng mga libro ng problema, at isa ring kinakailangang bahagi ng mga pagsusulit sa matematika. Para sa pagpasok sa unibersidad o pagpasa mga pagsusulit sa pasukan sa matematika kailangan mong malaman kung paano lutasin nang tama ang mga ganitong problema.

Sa kasamaang palad, walang iisang plano o scheme para sa paglutas at pagtukoy ng hindi kilalang halaga ng logarithm, gayunpaman, maaari itong ilapat sa bawat hindi pagkakapantay-pantay ng matematika o logarithmic equation. ilang mga tuntunin. Una sa lahat, dapat mong malaman kung ang expression ay maaaring gawing simple o humantong sa pangkalahatang hitsura. Maaari mong gawing simple ang mahabang logarithmic expression kung gagamitin mo nang tama ang mga katangian ng mga ito. Kilalanin natin sila nang mabilis.

Kapag nilulutas ang mga logarithmic equation, dapat nating matukoy kung anong uri ng logarithm ang mayroon tayo: ang isang halimbawang expression ay maaaring maglaman ng natural na logarithm o isang decimal.

Narito ang mga halimbawa ln100, ln1026. Ang kanilang solusyon ay bumababa sa katotohanan na kailangan nilang matukoy ang kapangyarihan kung saan ang base 10 ay magiging katumbas ng 100 at 1026, ayon sa pagkakabanggit. Para sa mga solusyon natural logarithms kailangan mong ilapat ang mga logarithmic na pagkakakilanlan o ang kanilang mga katangian. Tingnan natin ang mga halimbawa ng paglutas ng mga problemang logarithmic ng iba't ibang uri.

Paano Gumamit ng Mga Logarithm Formula: May Mga Halimbawa at Solusyon

Kaya, tingnan natin ang mga halimbawa ng paggamit ng mga pangunahing teorema tungkol sa logarithms.

  1. Ang pag-aari ng logarithm ng isang produkto ay maaaring gamitin sa mga gawain kung saan kinakailangan na palawakin malaking halaga mga numero b sa mas simpleng mga kadahilanan. Halimbawa, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ang sagot ay 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1.5 - tulad ng nakikita mo, gamit ang ikaapat na pag-aari ng kapangyarihan ng logarithm, nalutas namin ang isang tila kumplikado at hindi malulutas na expression. Kailangan mo lamang i-factor ang base at pagkatapos ay alisin ang mga exponent value sa sign ng logarithm.

Mga takdang-aralin mula sa Unified State Exam

Ang mga logarithm ay madalas na matatagpuan sa mga pagsusulit sa pasukan, lalo na sa maraming mga logarithmic na problema sa Unified State Exam (pagsusulit ng estado para sa lahat ng nagtapos sa paaralan). Kadalasan, ang mga gawaing ito ay naroroon hindi lamang sa bahagi A (ang pinakamadaling bahagi ng pagsusulit ng pagsusulit), kundi pati na rin sa bahagi C (ang pinakamasalimuot at napakaraming gawain). Ang pagsusulit ay nangangailangan ng tumpak at perpektong kaalaman sa paksang "Natural logarithms".

Ang mga halimbawa at solusyon sa mga problema ay kinuha mula sa opisyal Mga opsyon sa Pinag-isang State Exam. Tingnan natin kung paano nalutas ang mga naturang gawain.

Ibinigay na log 2 (2x-1) = 4. Solusyon:
isulat muli natin ang expression, pinasimple ito ng kaunting log 2 (2x-1) = 2 2, sa pamamagitan ng kahulugan ng logarithm nakukuha natin na 2x-1 = 2 4, samakatuwid 2x = 17; x = 8.5.

  • Pinakamainam na bawasan ang lahat ng logarithms sa parehong base upang ang solusyon ay hindi masalimuot at nakakalito.
  • Ang lahat ng mga expression sa ilalim ng logarithm sign ay ipinahiwatig bilang positibo, samakatuwid, kapag ang exponent ng isang expression na nasa ilalim ng logarithm sign at bilang base nito ay kinuha bilang isang multiplier, ang expression na natitira sa ilalim ng logarithm ay dapat na positibo.

Patuloy kaming nag-aaral ng logarithms. Sa artikulong ito ay pag-uusapan natin pagkalkula ng logarithms, ang prosesong ito ay tinatawag logarithm. Una ay mauunawaan natin ang pagkalkula ng logarithms sa pamamagitan ng kahulugan. Susunod, tingnan natin kung paano matatagpuan ang mga halaga ng logarithms gamit ang kanilang mga katangian. Pagkatapos nito, tututukan namin ang pagkalkula ng logarithms sa pamamagitan ng unang tinukoy na mga halaga ng iba pang logarithms. Panghuli, alamin natin kung paano gumamit ng mga talahanayan ng logarithm. Ang buong teorya ay binibigyan ng mga halimbawa na may mga detalyadong solusyon.

Pag-navigate sa pahina.

Pagkalkula ng logarithms sa pamamagitan ng kahulugan

Sa pinakasimpleng mga kaso posible na gumanap nang mabilis at madali paghahanap ng logarithm sa pamamagitan ng kahulugan. Tingnan natin kung paano nangyayari ang prosesong ito.

Ang kakanyahan nito ay upang kumatawan sa bilang b sa anyong a c, kung saan, sa pamamagitan ng kahulugan ng isang logarithm, ang numero c ay ang halaga ng logarithm. Iyon ay, ayon sa kahulugan, ang sumusunod na hanay ng mga pagkakapantay-pantay ay tumutugma sa paghahanap ng logarithm: log a b=log a a c =c.

Kaya, ang pagkalkula ng logarithm sa pamamagitan ng kahulugan ay bumababa sa paghahanap ng isang numero c na ang isang c = b, at ang numero c mismo ay ang nais na halaga ng logarithm.

Isinasaalang-alang ang impormasyon sa mga nakaraang talata, kapag ang numero sa ilalim ng logarithm sign ay ibinigay ng isang tiyak na kapangyarihan ng logarithm base, maaari mong agad na ipahiwatig kung ano ang katumbas ng logarithm - ito ay katumbas ng exponent. Ipakita natin ang mga solusyon sa mga halimbawa.

Halimbawa.

Hanapin ang log 2 2 −3, at kalkulahin din ang natural na logarithm ng numerong e 5,3.

Solusyon.

Ang kahulugan ng logarithm ay nagpapahintulot sa atin na agad na sabihin na ang log 2 2 −3 =−3. Sa katunayan, ang numero sa ilalim ng logarithm sign ay katumbas ng base 2 sa −3 na kapangyarihan.

Katulad nito, nakita natin ang pangalawang logarithm: lne 5.3 =5.3.

Sagot:

log 2 2 −3 =−3 at lne 5,3 =5,3.

Kung ang numero b sa ilalim ng logarithm sign ay hindi tinukoy bilang isang kapangyarihan ng base ng logarithm, pagkatapos ay kailangan mong maingat na tumingin upang makita kung ito ay posible na magkaroon ng isang representasyon ng numero b sa form a c . Kadalasan ang representasyong ito ay medyo halata, lalo na kapag ang numero sa ilalim ng logarithm sign ay katumbas ng base sa kapangyarihan ng 1, o 2, o 3, ...

Halimbawa.

Kalkulahin ang logarithms log 5 25 , at .

Solusyon.

Madaling makita na 25=5 2, ito ay nagpapahintulot sa iyo na kalkulahin ang unang logarithm: log 5 25=log 5 5 2 =2.

Magpatuloy tayo sa pagkalkula ng pangalawang logarithm. Ang numero ay maaaring katawanin bilang isang kapangyarihan ng 7: (tingnan kung kinakailangan). Kaya naman, .

Isulat muli natin ang ikatlong logarithm sa sumusunod na anyo. Ngayon ay makikita mo na , kung saan napagpasyahan namin iyon . Samakatuwid, sa pamamagitan ng kahulugan ng logarithm .

Sa madaling sabi, ang solusyon ay maaaring isulat tulad ng sumusunod: .

Sagot:

log 5 25=2 , At .

Kapag sa ilalim ng logarithm sign mayroong isang sapat na malaki natural na numero, kung gayon hindi masasaktan na i-factor ito sa mga pangunahing kadahilanan. Madalas itong nakakatulong na kumatawan sa isang numero bilang ilang kapangyarihan ng base ng logarithm, at samakatuwid ay kalkulahin ang logarithm na ito sa pamamagitan ng kahulugan.

Halimbawa.

Hanapin ang halaga ng logarithm.

Solusyon.

Ang ilang mga katangian ng logarithms ay nagbibigay-daan sa iyo upang agad na tukuyin ang halaga ng logarithms. Kasama sa mga katangiang ito ang pag-aari ng logarithm ng isa at ang pag-aari ng logarithm ng isang numero na katumbas ng base: log 1 1=log a a 0 =0 at log a a=log a a 1 =1. Iyon ay, kapag sa ilalim ng tanda ng logarithm mayroong isang numero 1 o isang numero na katumbas ng base ng logarithm, kung gayon sa mga kasong ito ang mga logarithm ay katumbas ng 0 at 1, ayon sa pagkakabanggit.

Halimbawa.

Ano ang katumbas ng logarithms at log10?

Solusyon.

Since , pagkatapos ay mula sa kahulugan ng logarithm ito ay sumusunod .

Sa pangalawang halimbawa, ang numero 10 sa ilalim ng logarithm sign ay tumutugma sa base nito, kaya ang decimal logarithm ng sampu ay katumbas ng isa, iyon ay, lg10=lg10 1 =1.

Sagot:

AT lg10=1 .

Tandaan na ang pagkalkula ng logarithms ayon sa kahulugan (na tinalakay natin sa nakaraang talata) ay nagpapahiwatig ng paggamit ng equality log a a p =p, na isa sa mga katangian ng logarithms.

Sa pagsasagawa, kapag ang isang numero sa ilalim ng logarithm sign at ang base ng logarithm ay madaling kinakatawan bilang isang kapangyarihan ng isang tiyak na numero, napaka-maginhawang gamitin ang formula. , na tumutugma sa isa sa mga katangian ng logarithms. Tingnan natin ang isang halimbawa ng paghahanap ng logarithm na naglalarawan ng paggamit ng formula na ito.

Halimbawa.

Kalkulahin ang logarithm.

Solusyon.

Sagot:

.

Ang mga katangian ng logarithms na hindi nabanggit sa itaas ay ginagamit din sa mga kalkulasyon, ngunit pag-uusapan natin ito sa mga sumusunod na talata.

Paghahanap ng mga logarithm sa pamamagitan ng iba pang kilalang logarithms

Ang impormasyon sa talatang ito ay nagpapatuloy sa paksa ng paggamit ng mga katangian ng logarithms kapag kinakalkula ang mga ito. Ngunit dito ang pangunahing pagkakaiba ay ang mga katangian ng logarithm ay ginagamit upang ipahayag ang orihinal na logarithm sa mga tuntunin ng isa pang logarithm, ang halaga nito ay kilala. Magbigay tayo ng isang halimbawa para sa paglilinaw. Sabihin nating alam natin na log 2 3≈1.584963, pagkatapos ay mahahanap natin, halimbawa, log 2 6 sa pamamagitan ng paggawa ng kaunting pagbabago gamit ang mga katangian ng logarithm: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Sa halimbawa sa itaas, sapat na para sa amin na gamitin ang property ng logarithm ng isang produkto. Gayunpaman, mas madalas na kinakailangan na gumamit ng isang mas malawak na arsenal ng mga katangian ng logarithms upang makalkula ang orihinal na logarithm sa pamamagitan ng mga ibinigay.

Halimbawa.

Kalkulahin ang logarithm ng 27 hanggang base 60 kung alam mo na log 60 2=a at log 60 5=b.

Solusyon.

Kaya kailangan nating hanapin ang log 60 27 . Madaling makita na ang 27 = 3 3 , at ang orihinal na logarithm, dahil sa pag-aari ng logarithm ng kapangyarihan, ay maaaring muling isulat bilang 3·log 60 3 .

Ngayon tingnan natin kung paano ipahayag ang log 60 3 sa mga tuntunin ng kilalang logarithms. Ang pag-aari ng logarithm ng isang numero na katumbas ng base ay nagpapahintulot sa amin na isulat ang equality log 60 60=1. Sa kabilang banda, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . kaya, 2 log 60 2+log 60 3+log 60 5=1. Kaya naman, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Sa wakas, kinakalkula namin ang orihinal na logarithm: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

Sagot:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Hiwalay, ito ay nagkakahalaga ng pagbanggit ng kahulugan ng formula para sa paglipat sa isang bagong base ng logarithm ng form . Pinapayagan ka nitong lumipat mula sa logarithms na may anumang base patungo sa logarithms na may isang tiyak na base, ang mga halaga nito ay kilala o posible na mahanap ang mga ito. Karaniwan, mula sa orihinal na logarithm, gamit ang formula ng paglipat, lumipat sila sa logarithms sa isa sa mga base 2, e o 10, dahil para sa mga base na ito ay may mga talahanayan ng logarithms na nagpapahintulot sa kanilang mga halaga na kalkulahin na may isang tiyak na antas ng katumpakan. Sa susunod na talata ay ipapakita natin kung paano ito ginagawa.

Logarithm table at ang mga gamit nito

Para sa tinatayang pagkalkula ng mga halaga ng logarithm ay maaaring gamitin mga talahanayan ng logarithm. Ang pinakakaraniwang ginagamit na base 2 logarithm table, natural logarithm table, at decimal logarithm table. Kapag nagtatrabaho sa sistema ng decimal na numero, maginhawang gumamit ng talahanayan ng mga logarithms batay sa base ten. Sa tulong nito matututunan nating hanapin ang mga halaga ng logarithms.










Ang ipinakita na talahanayan ay nagbibigay-daan sa iyo upang mahanap ang mga halaga ng decimal logarithms ng mga numero mula 1,000 hanggang 9,999 (na may tatlong decimal na lugar) na may katumpakan ng isang sampung libo. Susuriin namin ang prinsipyo ng paghahanap ng halaga ng isang logarithm gamit ang isang talahanayan ng decimal logarithms sa tiyak na halimbawa- mas malinaw sa ganoong paraan. Hanapin natin ang log1.256.

Sa kaliwang hanay ng talahanayan ng mga decimal logarithms makikita natin ang unang dalawang digit ng numerong 1.256, iyon ay, nakita natin ang 1.2 (ang numerong ito ay binilog sa asul para sa kalinawan). Nahanap namin ang ikatlong digit ng 1.256 (digit 5) sa una o huling linya sa kaliwa ng dobleng linya (ang numerong ito ay binilog ng pula). Ang ikaapat na digit ng orihinal na numero 1.256 (digit 6) ay matatagpuan sa una o huling linya sa kanan ng dobleng linya (ang numerong ito ay binibigyang bilog ng berdeng linya). Ngayon nakita namin ang mga numero sa mga cell ng talahanayan ng mga logarithms sa intersection ng minarkahang hilera at minarkahang mga haligi (ang mga numerong ito ay naka-highlight kahel). Ang kabuuan ng mga minarkahang numero ay nagbibigay ng nais na halaga ng decimal logarithm na tumpak sa ikaapat na decimal place, iyon ay, log1.236≈0.0969+0.0021=0.0990.

Posible ba, gamit ang talahanayan sa itaas, upang mahanap ang mga halaga ng decimal logarithms ng mga numero na may higit sa tatlong digit pagkatapos ng decimal point, pati na rin ang mga lumalampas sa saklaw mula 1 hanggang 9.999? Oo, kaya mo. Ipakita natin kung paano ito ginagawa gamit ang isang halimbawa.

Kalkulahin natin ang lg102.76332. Una kailangan mong isulat numero sa karaniwang anyo : 102.76332=1.0276332·10 2. Pagkatapos nito, ang mantissa ay dapat na bilugan sa ikatlong decimal na lugar, mayroon kami 1.0276332 10 2 ≈1.028 10 2, habang ang orihinal na decimal logarithm ay humigit-kumulang katumbas ng logarithm ng resultang numero, ibig sabihin, kumukuha kami ng log102.76332≈lg1.028·10 2. Ngayon inilalapat namin ang mga katangian ng logarithm: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Sa wakas, nakita namin ang halaga ng logarithm lg1.028 mula sa talahanayan ng decimal logarithms lg1.028≈0.0086+0.0034=0.012. Bilang resulta, ang buong proseso ng pagkalkula ng logarithm ay ganito: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

Sa konklusyon, ito ay nagkakahalaga ng noting na gamit ang isang talahanayan ng decimal logarithms maaari mong kalkulahin ang tinatayang halaga ng anumang logarithm. Upang gawin ito, sapat na gamitin ang formula ng paglipat upang pumunta sa decimal logarithms, hanapin ang kanilang mga halaga sa talahanayan, at gawin ang natitirang mga kalkulasyon.

Halimbawa, kalkulahin natin ang log 2 3 . Ayon sa formula para sa paglipat sa isang bagong base ng logarithm, mayroon kaming . Mula sa talahanayan ng decimal logarithms makikita natin ang log3≈0.4771 at log2≈0.3010. kaya, .

Mga sanggunian.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. at iba pa Algebra at ang simula ng pagsusuri: Teksbuk para sa mga baitang 10 - 11 ng mga pangkalahatang institusyong pang-edukasyon.
  • Gusev V.A., Mordkovich A.G. Mathematics (isang manwal para sa mga pumapasok sa mga teknikal na paaralan).