Натуральний логарифм до чого можна застосувати. Натуральний логарифм, функція ln x


Логарифмом позитивного числа b на підставі a (a>0, a не дорівнює 1) називають таке число с, що a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0) nbsp nbsp nbsp

Зверніть увагу: логарифм від позитивного числа не визначено. Крім того, в основі логарифму має бути позитивне число, не рівне 1. Наприклад, якщо ми зведемо -2 у квадрат, отримаємо число 4, але це не означає, що логарифм на підставі -2 від 4 дорівнює 2.

Основне логарифмічне тотожність

a log a b = b (a > 0, a ≠ 1) (2)

Важливо, що області визначення правої та лівої частин цієї формули відрізняються. Ліва частинавизначено лише за b>0, a>0 і a ≠ 1. Права частина визначена за будь-якого b, а від a взагалі не залежить. Таким чином, застосування основної логарифмічної "тотожності" при вирішенні рівнянь та нерівностей може призвести до зміни ОДЗ.

Два очевидні наслідки визначення логарифму

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Дійсно, при зведенні числа a в першу міру ми отримаємо те саме число, а при зведенні в нульовий ступінь - одиницю.

Логарифм твору та логарифм приватного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотілося б застерегти школярів від бездумного застосування цих формул під час вирішення логарифмічних рівняньта нерівностей. При їх використанні "зліва направо" відбувається звуження ОДЗ, а при переході від суми чи різниці логарифмів до логарифму твору або приватного - розширення ОДЗ.

Дійсно, вираз log a (f (x) g (x)) визначено у двох випадках: коли обидві функції суворо позитивні або коли f (x) і g (x) обидві менше від нуля.

Перетворюючи цей вираз у суму log a f (x) + log a g (x) , ми змушені обмежуватися лише випадком, коли f(x)>0 і g(x)>0. В наявності звуження області допустимих значень, а це категорично неприпустимо, тому що може призвести до втрати рішень. Аналогічна проблема існує й у формули (6).

Ступінь можна виносити за знак логарифму

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

І знову хотілося б покликати до акуратності. Розглянемо наступний приклад:

Log a (f(x) 2 = 2 log a f(x)

Ліва частина рівності визначена, очевидно, за всіх значень f(х), крім нуля. Права частина - тільки за f(x)>0! Виносячи ступінь із логарифму, ми знову звужуємо ОДЗ. Зворотна процедура призводить до розширення області допустимих значень. Всі ці зауваження стосуються не тільки ступеня 2, але й будь-якого парного ступеня.

Формула переходу до нової основи

log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Той рідкісний випадок, коли ОДЗ не змінюється під час перетворення. Якщо ви розумно вибрали основу з (позитивна і не рівна 1), формула переходу до нової основи є абсолютно безпечною.

Якщо в якості нової основи вибрати число b, отримаємо важливий окремий випадокформули (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Декілька простих прикладів з логарифмами

Приклад 1. Обчисліть: lg2 + lg50.
Рішення. lg2 + lg50 = lg100 = 2. Ми скористалися формулою суми логарифмів (5) та визначенням десяткового логарифму.


Приклад 2. Розрахуйте: lg125/lg5.
Рішення. lg125/lg5 = log 5 125 = 3. Ми використали формулу переходу до нової основи (8).

Таблиця формул, пов'язаних із логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log ca (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

1.1. Визначення ступеня для цілого показника ступеня

X 1 = X
X 2 = X * X
X 3 = X * X * X

X N = X * X * ... * X - N разів

1.2. Нульовий ступінь.

За визначенням прийнято вважати, що нульовий ступінь будь-якого числа дорівнює 1:

1.3. Негативний ступінь.

X-N = 1/X N

1.4. Дробний ступінь, корінь.

X 1/N = корінь ступеня N із Х.

Наприклад: X 1/2 = √X.

1.5. Формула складання ступенів.

X (N+M) = X N * X M

1.6.Формула віднімання ступенів.

X (N-M) = X N / X M

1.7. Формула множення ступенів.

X N * M = (X N) M

1.8. Формула зведення дробу на ступінь.

(X/Y) N = X N /Y N

2. Число e.

Значення числа e дорівнює наступній межі:

E = lim(1+1/N), за N → ∞.

З точністю 17 знаків число e дорівнює 2.71828182845904512.

3. Рівність Ейлера.

Ця рівність пов'язує п'ять чисел, які відіграють особливу роль математиці: 0, 1, число e, число пі, уявну одиницю.

E (i*пі) + 1 = 0

4. Експонентна функція exp (x)

exp(x) = e x

5. Похідна експоненційної функції

Експоненційна функція має чудову властивість: похідна функції дорівнює самій експоненційній функції:

(exp(x))" = exp(x)

6. Логарифм.

6.1. Визначення функції логарифм

Якщо x = b y , то логарифм називається функція

Y = Log b(x).

Логарифм показує в яку міру треба звести число - основу логарифму (b), щоб отримати задане число (X). Функція логарифм визначена для X більше нуля.

Наприклад: Log 10 (100) = 2.

6.2. Десятковий логарифм

Це логарифм на підставі 10:

Y = Log 10 (x).

Позначається Log(x): Log(x) = Log 10(x).

Приклад використання десяткового логарифму - децибел.

6.3. Децибел

Пункт виділено на окрему сторінку Децибел

6.4. Двійковий логарифм

Це логарифм на підставі 2:

Y = Log 2(x).

Позначається Lg(x): Lg(x) = Log 2 (X)

6.5. Натуральний логарифм

Це логарифм на основі e:

Y = Log e(x).

Позначається Ln(x): Ln(x) = Log e(X)
Натуральний логарифм — зворотна функція експоненційної функції exp (X).

6.6. Характерні точки

Log a (1) = 0
Log a (a) = 1

6.7. Формула логарифму твору

Log a (x * y) = Log a (x) + Log a (y)

6.8. Формула логарифму приватного

Log a (x/y) = Log a (x)-Log a (y)

6.9. Формула логарифму ступеня

Log a (x y) = y * Log a (x)

6.10. Формула перетворення до логарифму з іншою основою

Log b (x) = (Log a (x))/Log a (b)

Приклад:

Log 2 (8) = Log 10 (8) / Log 10 (2) =
0.903089986991943552 / 0.301029995663981184 = 3

7. Формули корисні у житті

Часто виникають завдання перерахунку обсягу площу чи довжину і обернена завдання -- перерахунок площі обсяг. Наприклад, дошки продаються кубами (кубометрами), а нам потрібно розрахувати яку площу стіни можна обшити дошками, що містяться в певному обсязі, див. розрахунок дощок, скільки дощок у кубі. Або, відомі розміри стіни, треба розрахувати кількість цегли, див. розрахунок цегли.


Дозволяється використовувати матеріали сайту за умови встановлення активного посилання на джерело.

Наведено основні властивості натурального логарифму, графік, область визначення, безліч значень, основні формули, похідна, інтеграл, розкладання в статечний ряд і представлення функції ln x за допомогою комплексних чисел.

Визначення

Натуральний логарифм- це функція y = ln x, зворотна до експоненті, x = e y і є логарифмомна підставі числа е : ln x = log e x.

Натуральний логарифм широко використовується в математиці, оскільки його похідна має найпростіший вид: (ln x)′ = 1/ x.

Виходячи з визначення, основою натурального логарифму є число е:
е ≅ 2,718281828459045...;
.

Графік функції y = ln x.

Графік натурального логарифму (функції y = ln x) Виходить з графіка експонентидзеркальним відображенням щодо прямої y = x.

Натуральний логарифм визначено за позитивних значень змінної x . Він монотонно зростає у своїй області визначення.

При x → 0 межею натурального логарифму є мінус нескінченність (-∞).

При x → + ∞ межею натурального логарифму є плюс нескінченність ( + ∞ ). При великих логарифм зростає досить повільно. Будь-яка статечна функція x a з позитивним показником ступеня a зростає швидше за логарифму.

Властивості натурального логарифму

Область визначення, безліч значень, екстремуми, зростання, спадання

Натуральний логарифм є монотонно зростаючою функцією, тому екстремумів немає. Основні властивості натурального логарифму представлені у таблиці.

Значення ln x

ln 1 = 0

Основні формули натуральних логарифмів

Формули, що випливають із визначення зворотної функції:

Основна властивість логарифмів та його наслідки

Формула заміни основи

Будь-який логарифм можна виразити через натуральні логарифми за допомогою формули заміни основи:

Докази цих формул представлені у розділі "Логарифм".

Зворотня функція

Зворотним для натурального логарифму є експонента.

Якщо то

Якщо то .

Похідна ln x

Похідна натурального логарифму:
.
Похідна натурального логарифму від модуля x:
.
Похідна n-го порядку:
.
Висновок формул > > >

Інтеграл

Інтеграл обчислюється інтегруванням частинами :
.
Отже,

Вирази через комплексні числа

Розглянемо функцію комплексної змінної z:
.
Виразимо комплексну змінну zчерез модуль rта аргумент φ :
.
Використовуючи властивості логарифму, маємо:
.
Або
.
Аргумент φ визначено неоднозначно. Якщо покласти
де n - ціле,
то буде тим самим числом при різних n .

Тому натуральний логарифм як функція від комплексного змінного є неоднозначною функцією.

Розкладання в статечний ряд

При має місце розкладання:

Використана література:
І.М. Бронштейн, К.А. Семендяєв, Довідник з математики для інженерів та учнів втузів, «Лань», 2009.

Логарифмом числа b на підставі а називається показник ступеня, який потрібно звести число а щоб отримати число b.

Якщо то .

Логарифм - вкрай важлива математична величина, оскільки логарифмічне обчислення дозволяє не лише вирішувати показові рівняння, а й оперувати з показниками, диференціювати показові та логарифмічні функції, інтегрувати їх і призводити до більш прийнятного виду, що підлягає розрахунку.

Вконтакте

Усі властивості логарифмів пов'язані безпосередньо із властивостями показових функцій. Наприклад, той факт, що означає, що:

Слід зауважити, що при вирішенні конкретних завдань, властивості логарифмів можуть виявитися більш важливими та корисними, ніж правила роботи зі ступенями.

Наведемо деякі тотожності:

Наведемо основні вирази алгебри:

;

.

Увага!може існувати тільки за x>0, x≠1, y>0.

Намагатимемося розібратися з питанням, що таке натуральні логарифми. Окремий інтерес у математиці представляють два види— перший має в основі число «10», і зветься «десятковий логарифм». Другий називається натуральним. Основа натурального логарифму - число "е". Саме про нього ми і детально говоритимемо в цій статті.

Позначення:

  • lg x - десятковий;
  • ln x - натуральний.

Використовуючи тотожність, можна побачити, що ln e = 1, як і те, що lg 10=1.

Графік натурального логарифму

Збудуємо графік натурального логарифму стандартним класичним способомза точками. За бажання, перевірити, чи правильно ми будуємо функцію, можна за допомогою дослідження функції. Однак, є сенс навчитися будувати його «вручну», щоб знати, як правильно порахувати логарифм.

Функція: y = ln x. Запишемо таблицю точок, якими пройде графік:

Пояснимо, чому ми вибрали саме такі значення аргументу х. Вся річ у тотожності: . Для натурального логарифму ця тотожність виглядатиме таким чином:

Для зручності ми можемо взяти п'ять опорних точок:

;

;

.

;

.

Таким чином, підрахунок натуральних логарифмів - досить нескладне заняття, більше того, він спрощує підрахунки операцій зі ступенями, перетворюючи їх на звичайне множення.

Побудувавши за точками графік, отримуємо приблизний графік:

Область визначення натурального логарифму (тобто все допустимі значенняаргументу Х) — усі числа більші за нуль.

Увага!До області визначення натурального логарифму входять лише позитивні числа! До області визначення не входить х=0. Це неможливо виходячи з умов існування логарифму.

Область значень (тобто усі допустимі значення функції y = ln x) — усі числа в інтервалі .

Межа натурального log

Вивчаючи графік, виникає питання - як поводиться функція при y<0.

Очевидно, що графік функції прагне перетнути вісь, але не зможе цього зробити, оскільки натуральний логарифм при х<0 не существует.

Межа натуральної logможна записати таким чином:

Формула заміни основи логарифму

Мати справу з натуральним логарифмом набагато простіше, ніж з логарифмом, що має довільну основу. Саме тому спробуємо навчитися приводити будь-який логарифм до натурального, або висловлювати його по довільній основі через натуральні логарифми.

Почнемо з логарифмічної тотожності:

Тоді будь-яке число, або змінну можна представити у вигляді:

де х - будь-яке число (позитивне згідно з властивостями логарифму).

Даний вираз можна прологарифмувати з обох боків. Зробимо це за допомогою довільної основи z:

Скористаємося властивістю (тільки замість «с» у нас вираз):

Звідси отримуємо універсальну формулу:

.

Зокрема, якщо z=e, тоді:

.

Нам вдалося уявити логарифм з довільної основи через відношення двох натуральних логарифмів.

Вирішуємо завдання

Щоб краще орієнтуватися в натуральних логарифмах, розглянемо приклади кількох завдань.

Завдання 1. Необхідно розв'язати рівняння ln x = 3.

Рішення:Використовуючи визначення логарифму: якщо , то отримуємо:

Завдання 2. Розв'яжіть рівняння (5 + 3 * ln (x - 3)) = 3.

Рішення: Використовуючи визначення логарифму: якщо , то отримуємо:

.

Ще раз застосуємо визначення логарифму:

.

Таким чином:

.

Можна приблизно обчислити відповідь, а можна залишити її і в такому вигляді.

Завдання 3.Розв'яжіть рівняння.

Рішення:Зробимо підстановку: t = ln x. Тоді рівняння набуде наступного вигляду:

.

Перед нами квадратне рівняння. Знайдемо його дискримінант:

Перший корінь рівняння:

.

Другий корінь рівняння:

.

Згадуючи про те, що ми робили підстановку t = ln x, отримуємо:

У статистиці та теорії ймовірності логарифмічні величини зустрічаються дуже часто. Це не дивно, адже число е — найчастіше відображає темпи зростання експоненційних величин.

В інформатиці, програмуванні та теорії обчислювальних машин, логарифми зустрічаються досить часто, наприклад, щоб зберегти в пам'яті N знадобиться бітів.

У теоріях фракталів та розмірності логарифми використовуються постійно, оскільки розмірності фракталів визначаються тільки за їх допомогою.

У механіці та фізицінемає такого розділу, де не використовувалися логарифми. Барометричний розподіл, усі принципи статистичної термодинаміки, рівняння Ціолковського та інше — процеси, які математично можна описати лише за допомогою логарифмування.

У хімії логарифмування використовують у рівняннях Нернста, описи окислювально-відновних процесів.

Вражаюче, але навіть у музиці, з метою дізнатися кількість частин октави, використовують логарифми.

Натуральний логарифм Функція y=ln x її властивості

Доказ основної властивості натурального логарифму