Логарифмічні рівняння! Розв'язання логарифмічних рівнянь. Як вирішувати, на прикладах


Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: log a xта log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий моменттут - однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті побудовано багато контрольні роботи. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x> 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

[Підпис до малюнка]

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа cтакого, що c> 0 та c≠ 1, вірна рівність:

[Підпис до малюнка]

Зокрема, якщо покласти c = x, Отримаємо:

[Підпис до малюнка]

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

[Підпис до малюнка]

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

[Підпис до малюнка]

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

[Підпис до малюнка]

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число nстає показником ступеня, що стоїть у аргументі. Число nможе бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона так і називається: основна логарифмічна тотожність.

Справді, що буде, якщо число bзвести в такий ступінь, що число bу цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

[Підпис до малюнка]

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ:)

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a= 1 – це логарифмічна одиниця. Запам'ятайте раз і назавжди: логарифм з будь-якої основи aвід цього підстави дорівнює одиниці.
  2. log a 1 = 0 – це логарифмічний нуль. Заснування aможе бути будь-яким, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 - це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Алгебра 11 клас

Тема: «Методи розв'язання логарифмічних рівнянь»

Цілі уроку:

освітня: формування знань про різних способахрозв'язання логарифмічних рівнянь, умінь застосовувати їх у кожній конкретної ситуаціїта вибирати для вирішення будь-який спосіб;

розвиваюча: розвиток умінь спостерігати, порівнювати, застосовувати знання у новій ситуації, виявляти закономірності, узагальнювати; формування навичок взаємоконтролю та самоконтролю;

виховна: виховання відповідального ставлення до навчальної праці, уважного сприйняття матеріалу під час уроку, акуратності ведення записів.

Тип уроку: урок ознайомлення з новим матеріалом

«Винахід логарифмів, скоротивши роботу астронома, продовжило йому життя».
Французький математик та астроном П.С. Лаплас

Хід уроку

I. Постановка мети уроку

Вивчені визначення логарифму, властивості логарифмів та логарифмічної функції дозволять нам вирішувати логарифмічні рівняння. Всі логарифмічні рівняння, якої б складності вони не були, вирішуються за єдиними алгоритмами. Ці алгоритми розглянемо сьогодні на уроці. Їх не багато. Якщо їх освоїти, то будь-яке рівняння з логарифмами буде посильним кожному з вас.

Запишіть у зошиті тему уроку: «Методи розв'язання логарифмічних рівнянь». Запрошую всіх до співпраці.

ІІ. Актуалізація опорних знань

Підготуємось до вивчення теми уроку. Кожне завдання ви вирішуєте та записуєте відповідь, умову можна не писати. Працюйте у парах.

1) При яких значеннях має сенс функція:

(По кожному слайду звіряються відповіді та розбираються помилки)

2) Чи збігаються графіки функцій?

3) Перепишіть рівності у вигляді логарифмічних рівностей:

4) Запишіть числа у вигляді логарифмів з основою 2:

5) Обчисліть:

6) Спробуйте відновити або доповнити елементи, що відсутні, в даних рівностях.

ІІІ. Ознайомлення з новим матеріалом

Демонструється на екрані вислів:

«Рівняння – це золотий ключ, який відкриває всі математичні сезами».
Сучасний польський математик С. Коваль

Спробуйте сформулювати визначення логарифмічного рівняння. (Рівняння, що містить невідоме під знаком логарифму).

Розглянемо найпростіше логарифмічне рівняння:logаx = b(Де а>0, a ≠ 1). Так як логарифмічна функція зростає (або зменшується) на безлічі позитивних чисел і приймає всі дійсні значення, то за теоремою про корені слідує, що для будь-якого b дане рівняння має, і притому тільки одне рішення, причому позитивне.

Згадайте визначення логарифму. (Логарифм числа х на підставі а - це показник ступеня, в який треба звести основу а, щоб отримати число х). З визначення логарифму відразу випливає, що авє таким рішенням.

Запишіть заголовок: Методи розв'язання логарифмічних рівнянь

1. За визначенням логарифму.

Так вирішуються найпростіші рівняння виду.

Розглянемо № 514(а): Вирішити рівняння

Як ви пропонуєте його вирішувати? (За визначенням логарифму)

Рішення. , звідси 2х – 4 = 4; х = 4.

У цьому вся заданні 2х - 4 > 0, оскільки > 0, тому сторонніх коренів з'явитися неспроможна, і перевірку не потрібно робити. Умову 2х – 4 > 0 у цьому завданні виписувати не треба.

2. Потенціювання(перехід від логарифму даного виразу до цього виразу).

Розглянемо №519(г): log5(x2+8)-log5(x+1)=3log5 2

Яку особливість ви помітили? (Підстави однакові та логарифми двох виразів рівні). Що можна зробити? (Потенціювати).

При цьому треба враховувати, що будь-яке рішення міститься серед усіх х, для яких вирази, що логарифмуються, позитивні.

Рішення: ОДЗ:

X2+8>0 зайва нерівність

log5(x2+8) =log5 23+ log5(x+1)

log5(x2+8)= log5 (8 x+8)

Потенціюємо вихідне рівняння

отримаємо рівняння x2+8=8x+8

Вирішуємо його: x2-8x=0

Відповідь: 0; 8

Загалом переходом до рівносильної системи:

Рівняння

(Система містить надмірну умову - одна з нерівностей можна не розглядати).

Питання класу: Яке з цих трьох рішень вам найбільше сподобалося? (Обговорення методів).

Ви маєте право вирішувати у будь-який спосіб.

3. Введення нової змінної.

Розглянемо № 520(г). .

Що ви помітили? (Це квадратне рівнянняотносительно log3x) Ваші пропозиції? (Ввести нову змінну)

Рішення. ОДЗ: х > 0.

Нехай тоді рівняння набуде вигляду:. Дискримінант D > 0. Коріння за теоремою Вієта:.

Повернімося до заміни: або .

Розв'язавши найпростіші логарифмічні рівняння, отримаємо:

Відповідь: 27;

4. Логарифмування обох частин рівняння.

Вирішити рівняння:.

Рішення: ОДЗ: х>0, прологарифмуємо обидві частини рівняння на підставі 10:

Застосуємо властивість логарифму ступеня:

(lgx + 3) lgx = 4

Нехай lgx = y, тоді (у + 3) у = 4

, (D > 0) коріння за теоремою Вієта: у1 = -4 і у2 = 1.

Повернемося до заміни, отримаємо: lgx = -4,; lgx = 1, .

Відповідь: 0,0001; 10.

5. Приведення до однієї основи.

№ 523(в). Розв'яжіть рівняння:

Рішення: ОДЗ: х>0. Перейдемо до основи 3.

6. Функціонально-графічний метод.

509(г).Розв'язати графічно рівняння: = 3 – x.

Як ви пропонуєте вирішувати? (Будувати за точками графіки двох функцій у = log2x та y = 3 - x і шукати абсцису точок перетину графіків).

Подивіться ваше рішення на слайді.

Є спосіб, що дозволяє не будувати графіки . Він полягає в наступному : якщо одна з функційу = f(x) зростає, а інша y = g(x) зменшується на проміжку Х, то рівняння f(x)= g(x) має не більше одного кореня на проміжку Х.

Якщо корінь є, його можна вгадати.

У нашому випадку функція зростає при х>0, а функція y = 3 - x зменшується при всіх значеннях х, у тому числі і при х>0, отже, рівняння має не більше одного кореня. Зауважимо, що з х = 2 рівняння звертається у правильну рівність, оскільки .

« Правильне застосуванняметодів можна навчитися,
тільки застосовуючи їх на різних прикладах».
Датський історик математики Г. Г. Цейтен

IV. Домашнє завдання

П. 39 розглянути приклад 3, вирішити № 514(б), № 529(б), №520(б), №523(б)

V. Підбиття підсумків уроку

Які методи розв'язання логарифмічних рівнянь ми розглянули на уроці?

На наступних уроках розглянемо складніші рівняння. Для їх вирішення знадобляться вивчені методи.

Демонструється останній слайд:

«Що є найбільше у світі?
Простір.
Що наймудріше?
Час.
Що найприємніше?
Досягти бажаного».
Фалес

Бажаю всім досягти бажаного. Дякую за співпрацю та розуміння.

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичних властивостейможна вивести шляхом математичних маніпуляцій із даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів з шкільної програмита ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складне вираження з використанням низки правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи вирішення таких рівнянь, ми розширимо Ваші знання для іншої не менш важливої ​​теми — логарифмічні нерівності.

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Як відомо, при перемноженні виразів зі ступенями їх показники завжди складаються (a b * a c = a b + c). Цей математичний законбув виведений Архімедом, а згодом, у VIII столітті, математик Вірасен створив таблицю цілих показників. Саме вони стали для подальшого відкриття логарифмів. Приклади використання цієї функції можна зустріти скрізь, де потрібно спростити громіздке множення на просте додавання. Якщо ви витратите 10 хвилин на прочитання цієї статті, ми вам пояснимо, що таке логарифми і як з ними працювати. Простим та доступним мовою.

Визначення в математиці

Логарифмом називається вираз наступного виду: log a b=c, тобто логарифмом будь-якого невід'ємного числа (тобто будь-якого позитивного) "b" за його основою "a" вважається ступінь "c", в яку необхідно звести основу "a", щоб у результаті отримати значення "b". Розберемо логарифм на прикладах, скажімо, є вираз log 2 8. Як знайти відповідь? Дуже просто, потрібно знайти такий ступінь, щоб з 2 до ступеня отримати 8. Зробивши в умі деякі розрахунки, отримуємо число 3! І вірно, адже 2 у ступені 3 відповідає у відповідь число 8.

Різновиди логарифмів

Для багатьох учнів і студентів ця тема видається складною і незрозумілою, проте насправді логарифми не такі страшні, головне - зрозуміти загальний їхній зміст і запам'ятати їхню власність і деякі правила. Існує три окремі види логарифмічних виразів:

  1. Натуральний логарифм ln a де основою є число Ейлера (e = 2,7).
  2. Десятковий a де підставою служить число 10.
  3. Логарифм будь-якого числа b на підставі a>1.

Кожен із них вирішується стандартним способом, Що включає спрощення, скорочення і подальше приведення до одного логарифму за допомогою логарифмічних теорем. Для отримання вірних значень логарифмів слід запам'ятати їх властивості та черговість дій за їх рішення.

Правила та деякі обмеження

У математиці існує кілька правил-обмежень, які приймаються як аксіома, тобто не підлягають обговоренню та є істиною. Наприклад, не можна числа ділити на нуль, а ще неможливо отримати корінь парного ступеня з негативних чисел. Логарифми також мають свої правила, дотримуючись яких можна легко навчитися працювати навіть з довгими і ємними логарифмічними виразами:

  • основа "a" завжди має бути більшою за нуль, і при цьому не бути рівним 1, інакше вираз втратить свій зміст, адже "1" і "0" у будь-якій мірі завжди рівні своїм значенням;
  • якщо а > 0, то і а b > 0, виходить, що і "з" має бути більшим за нуль.

Як вирішувати логарифми?

Наприклад, дано завдання знайти відповідь рівняння 10 х = 100. Це дуже легко, потрібно підібрати такий ступінь, звівши до якого число десять ми отримаємо 100. Це, звичайно ж, 10 2 =100.

А тепер давайте уявимо цей вираз у вигляді логарифмічного. Отримаємо log 10 100 = 2. При вирішенні логарифмів всі дії практично сходяться до того, щоб знайти той ступінь, в який необхідно ввести основу логарифму, щоб отримати задане число.

Для безпомилкового визначення значення невідомого ступеня необхідно навчитися працювати з таблицею ступенів. Виглядає вона так:

Як бачите, деякі показники ступеня можна вгадати інтуїтивно, якщо є технічний склад розуму та знання таблиці множення. Однак для великих значень знадобиться таблиця ступенів. Нею можуть користуватися навіть ті, хто зовсім нічого не тямить у складних математичних темах. У лівому стовпці вказані числа (основа a), верхній рядчисел - це значення ступеня c, яку зводиться число a. На перетині в осередках визначено значення чисел, що є відповіддю (a c = b). Візьмемо, наприклад, саму першу комірку з числом 10 і зведемо її в квадрат, отримаємо значення 100, яке вказано на перетині двох наших осередків. Все так просто і легко, що зрозуміє навіть справжнісінький гуманітарій!

Рівняння та нерівності

Виходить, що за певних умов показник ступеня – це і є логарифм. Отже, будь-які математичні чисельні вирази можна записати як логарифмічного рівності. Наприклад, 3 4 =81 можна записати у вигляді логарифму числа 81 на підставі 3, що дорівнює чотирьом (log 3 81 = 4). Для негативних ступенів правила такі самі: 2 -5 = 1/32 запишемо як логарифма, отримаємо log 2 (1/32) = -5. Однією з найцікавіших розділів математики є тема "логарифми". Приклади та розв'язання рівнянь ми розглянемо трохи нижче, відразу після вивчення їх властивостей. А зараз давайте розберемо, як виглядають нерівності та як їх відрізнити від рівнянь.

Дано вираз такого вигляду: log 2 (x-1) > 3 - воно є логарифмічною нерівністютому що невідоме значення "х" знаходиться під знаком логарифму. А також у виразі порівнюються дві величини: логарифм шуканого числа на підставі два більше, ніж число три.

Найголовніша відмінність між логарифмічними рівняннями та нерівностями полягає в тому, що рівняння з логарифмами (приклад - логарифм 2 x = √9) мають на увазі у відповіді одне або кілька певних числових значень, тоді як при розв'язанні нерівності визначаються як область допустимих значень, і точки розриву цієї функції. Як наслідок, у відповіді виходить не проста безліч окремих чисел як у відповіді рівняння, а безперервний ряд або набір чисел.

Основні теореми про логарифми

При вирішенні примітивних завдань знаходження значень логарифма, його властивості можна і не знати. Однак коли мова заходить про логарифмічні рівняння або нерівності, в першу чергу необхідно чітко розуміти і застосовувати на практиці всі основні властивості логарифмів. З прикладами рівнянь ми познайомимося пізніше, давайте спочатку розберемо кожну властивість докладніше.

  1. Основне тотожність має такий вигляд: а logaB =B. Воно застосовується лише за умови, коли а більше 0, не дорівнює одиниці і B більше за нуль.
  2. Логарифм твору можна представити у такій формулі: log d (s 1 * s 2) = log d s 1 + log d s 2. При цьому обов'язковою умовоює: d, s 1 та s 2 > 0; а≠1. Можна навести доказ цієї формули логарифмів, з прикладами і рішенням. Нехай log a s 1 = f 1 і log a s 2 = f 2 тоді а f1 = s 1 , a f2 = s 2. Отримуємо, що s 1 *s 2 = a f1 *a f2 = a f1+f2 (властивості ступенів ), а далі за визначенням: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, що і потрібно довести.
  3. Логарифм приватного має такий вигляд: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема у вигляді формули набуває наступного вигляду: log a q b n = n/q log a b.

Називається ця формула "властивістю ступеня логарифму". Вона нагадує властивості звичайних ступенів, і не дивно, адже вся математика тримається на закономірних постулатах. Погляньмо на доказ.

Нехай log a b = t, виходить a t = b. Якщо звести обидві частини до ступеня m: a tn = b n ;

але оскільки a tn = (a q) nt / q = b n, отже log a q b n = (n * t) / t, тоді log a q b n = n / q log a b. Теорему доведено.

Приклади завдань та нерівностей

Найпоширеніші типи завдань на тему логарифмів – приклади рівнянь та нерівностей. Вони зустрічаються практично у всіх задачниках, а також входять до обов'язкової частини іспитів з математики. Для вступу до університету чи здачі вступних випробуваньз математики необхідно знати, як правильно вирішувати такі завдання.

На жаль, єдиного плану чи схеми щодо вирішення та визначення невідомого значення логарифму не існує, проте до кожної математичної нерівності чи логарифмічного рівняння можна застосувати певні правила. Насамперед слід з'ясувати, чи можна спростити вираз чи призвести до загального вигляду. Спрощувати довгі логарифмічні вирази можна, якщо правильно використовувати їх властивості. Давайте скоріше з ними познайомимося.

При вирішенні ж логарифмічних рівнянь слід визначити, який перед нами вид логарифму: приклад виразу може містити натуральний логарифм або десятковий.

Ось приклади ln100, ln1026. Їх рішення зводиться до того, що потрібно визначити той ступінь, в якому основа 10 дорівнюватиме 100 і 1026 відповідно. Для рішень же натуральних логарифмівнеобхідно застосувати логарифмічні тотожності або їх властивості. Давайте на прикладах розглянемо розв'язання логарифмічних завдань різного типу.

Як використовувати формули логарифмів: з прикладами та рішеннями

Отже, розглянемо приклади використання основних теорем про логарифми.

  1. Властивість логарифму твору можна застосовувати у завданнях, де необхідно розкласти велике значеннячисла b більш прості сомножители. Наприклад, log 2 4 + log 2 128 = log 2 (4 * 128) = log 2 512. Відповідь дорівнює 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - як бачите, застосовуючи четверту властивість ступеня логарифму, вдалося вирішити на перший погляд складне і нерозв'язне вираз. Необхідно лише розкласти основу на множники і потім винести значення ступеня зі знака логарифму.

Завдання з ЄДІ

Логарифми часто зустрічаються на вступних іспитах, особливо багато логарифмічних завдань у ЄДІ (державний іспит для всіх випускників шкіл). Зазвичай ці завдання присутні у частині А (найлегша тестова частина іспиту), а й у частини З (найскладніші і об'ємні завдання). Іспит передбачає точне та ідеальне знання теми "Натуральні логарифми".

Приклади та розв'язання завдань взяті з офіційних варіантів ЄДІ. Давайте подивимося, як вирішуються такі завдання.

Дано log 2 (2x-1) = 4. Рішення:
перепишемо вираз, трохи спростивши його log 2 (2x-1) = 2 2 , за визначенням логарифму отримаємо, що 2x-1 = 2 4 , отже 2x = 17; x = 8,5.

  • Всі логарифми найкраще приводити до однієї підстави, щоб рішення не було громіздким та заплутаним.
  • Всі вирази, що стоять під знаком логарифму, вказуються як позитивні, тому при винесенні множником показника ступеня виразу, який стоїть під знаком логарифму і як його підстава, вираз, що залишається під логарифмом, має бути позитивним.

Продовжуємо вивчати логарифми. У цій статті ми поговоримо про обчислення логарифмів, цей процес називають логарифмуванням. Спочатку ми розберемося з обчисленням логарифмів за визначенням. Далі розглянемо, як знаходять значення логарифмів з їх властивостей. Після цього зупинимося на обчисленні логарифмів через задані значення інших логарифмів. Нарешті, навчимося використовувати таблиці логарифмів. Вся теорія має приклади з докладними рішеннями.

Навігація на сторінці.

Обчислення логарифмів за визначенням

У найпростіших випадках можна досить швидко і легко виконати знаходження логарифму за визначенням. Давайте докладно розглянемо, як відбувається цей процес.

Його суть полягає в поданні числа b у вигляді a c , звідки визначення логарифму число c є значенням логарифму. Тобто, знаходження логарифму за визначенням відповідає наступний ланцюжок рівностей: log a b = log a a c = c.

Отже, обчислення логарифму за визначенням зводиться до знаходження такого числа c , що a c = b , а саме c є значення логарифму.

Враховуючи інформацію попередніх абзаців, коли число під знаком логарифму задано деяким ступенем заснування логарифму, то можна відразу вказати, чому дорівнює логарифм – він дорівнює показнику ступеня. Покажемо рішення прикладів.

приклад.

Знайдіть log 2 2 −3, а також обчисліть натуральний логарифм числа e 5,3.

Рішення.

Визначення логарифму дозволяє нам відразу сказати, що log 2 2 −3 =−3 . Дійсно, число під знаком логарифму дорівнює підставі 2 -3 ступеня.

Аналогічно знаходимо другий логарифм: lne 5,3 = 5,3.

Відповідь:

log 2 2 −3 =−3 та lne 5,3 =5,3 .

Якщо ж число b під знаком логарифму не задано як ступінь основи логарифму, потрібно уважно подивитися, чи можна дійти уявлення числа b як a c . Часто таке уявлення буває досить очевидним, особливо коли число під знаком логарифму дорівнює підставі в ступені 1, або 2, або 3, ...

приклад.

Обчисліть логарифми log 5 25 і .

Рішення.

Нескладно помітити, що 25 = 5 2 це дозволяє обчислювати перший логарифм: log 5 25 = log 5 5 2 = 2 .

Переходимо до обчислення другого логарифму. Число можна представити у вигляді ступеня числа 7: (за потреби дивіться ). Отже, .

Перепишемо третій логарифм у такому вигляді. Тепер можна побачити, що , звідки укладаємо, що . Отже, за визначенням логарифму .

Коротко рішення можна було записати так: .

Відповідь:

log 5 25 = 2, і .

Коли під знаком логарифму знаходиться досить велике натуральне числото його не завадить розкласти на прості множники. Це часто допомагає уявити таке число у вигляді певної міри підстави логарифму, отже, обчислити цей логарифм за визначенням.

приклад.

Знайдіть значення логарифму.

Рішення.

Деякі властивості логарифмів дозволяють одразу вказати значення логарифмів. До таких властивостей відносяться властивість логарифму одиниці та властивість логарифму числа, що дорівнює основі: log 1 1 = log a a 0 = 0 і log a a = log a a 1 = 1 . Тобто коли під знаком логарифму знаходиться число 1 або число a , рівне підставі логарифму, то в цих випадках логарифми рівні 0 і 1 відповідно.

приклад.

Чому рівні логарифми та lg10?

Рішення.

Оскільки , то з визначення логарифму випливає .

У другому прикладі число 10 під знаком логарифму збігається з його основою, тому десятковий логарифм десяти дорівнює одиниці, тобто lg10=lg10 1 =1 .

Відповідь:

І lg10=1.

Зазначимо, що обчислення логарифмів за визначенням (яке ми розібрали в попередньому пункті) має на увазі використання рівності log a a p =p, яка є однією з властивостей логарифмів.

На практиці, коли число під знаком логарифму та основа логарифму легко видаються у вигляді ступеня деякого числа, дуже зручно використовувати формулу , Що відповідає одному з властивостей логарифмів. Розглянемо приклад знаходження логарифму, що ілюструє використання цієї формули.

приклад.

Обчисліть логарифм.

Рішення.

Відповідь:

.

Не згадані вище властивості логарифмів також використовуються для обчислення, але про це поговоримо в наступних пунктах.

Знаходження логарифмів через інші відомі логарифми

Інформація цього пункту продовжує тему використання властивостей логарифмів під час їх обчислення. Але тут основна відмінність полягає в тому, що властивості логарифмів використовуються для того, щоб виразити вихідний логарифм через інший логарифм, значення якого відомо. Наведемо приклад пояснення. Припустимо, ми знаємо, що log 2 3≈1,584963 тоді ми можемо знайти, наприклад, log 2 6 , виконавши невелике перетворення за допомогою властивостей логарифму: log 2 6=log 2 (2·3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

У наведеному прикладі нам було достатньо використати властивість логарифму твору. Однак набагато частіше доводиться застосовувати ширший арсенал властивостей логарифмів, щоб обчислити вихідний логарифм через задані.

приклад.

Обчисліть логарифм 27 на підставі 60 якщо відомо, що log 60 2=a і log 60 5=b .

Рішення.

Отже, нам потрібно знайти log 60 27 . Нескладно помітити, що 27=3 3 і вихідний логарифм в силу властивості логарифму ступеня можна переписати як 3 log 60 3 .

Тепер подивимося, як log 60 3 виразити через відомі логарифми. Властивість логарифму числа, що дорівнює основі, дозволяє записати рівність log 60 60 = 1 . З іншого боку log 60 60 = log60 (2 2 · 3 · 5) = log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . Таким чином, 2·log 60 2+log 60 3+log 60 5=1. Отже, log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Нарешті, обчислюємо вихідний логарифм: log 60 27 = 3 · log 60 3 = 3·(1−2·a−b)=3−6·a−3·b.

Відповідь:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Окремо варто сказати про значення формули переходу до нової основи логарифму виду . Вона дозволяє від логарифмів з будь-якими основами переходити до логарифмів з конкретною основою, значення яких відомі або є можливість їх відшукати. Зазвичай від вихідного логарифму за формулою переходу переходять до логарифм по одній з підстав 2 , e або 10 , так як з цих підстав існують таблиці логарифмів, що дозволяють з певним ступенем точності обчислювати їх значення. У цьому пункті ми покажемо, як це робиться.

Таблиці логарифмів, їх використання

Для наближеного обчислення значень логарифмів можна використовувати таблиці логарифмів. Найчастіше використовується таблиця логарифмів на підставі 2 таблиця натуральних логарифмів і таблиця десяткових логарифмів. При роботі в десятковій системі числення зручно користуватися таблицею логарифмів на підставі десять. З її допомогою і вчитимемося знаходити значення логарифмів.










Подана таблиця дозволяє з точністю до однієї десятитисячної знаходити значення десяткових логарифмів чисел від 1000 до 9999 (з трьома знаками після коми). Принцип знаходження значення логарифму за допомогою таблиці десяткових логарифмів розберемо на конкретному прикладі- так зрозуміліше. Знайдемо lg1,256.

У лівому стовпці таблиці десяткових логарифмів знаходимо дві перші цифри числа 1,256, тобто, знаходимо 1,2 (це для наочності обведено синьою лінією). Третю цифру числа 1,256 (цифру 5) знаходимо в першій чи останньому рядкуліворуч від подвійної лінії (це число обведене червоною лінією). Четверту цифру вихідного числа 1,256 (цифру 6) знаходимо в першому або останньому рядку праворуч від подвійної лінії (це число обведене зеленою лінією). Тепер знаходимо числа у осередках таблиці логарифмів на перетині зазначеного рядка та зазначених стовпців (ці числа виділені помаранчевим кольором). Сума зазначених чисел дає значення десяткового логарифму з точністю до четвертого знака після коми, тобто, lg1,236≈0,0969+0,0021=0,0990.

А чи можна, використовуючи наведену таблицю, знаходити значення десяткових логарифмів чисел, що мають більше трьох цифр після коми, а також за межі від 1 до 9,999? Так можна. Покажемо, як це робиться на прикладі.

Обчислимо lg102,76332. Спочатку потрібно записати число в стандартному вигляді : 102,76332 = 1,0276332 · 10 2 . Після цього мантису слід округлити до третього знака після коми, маємо 1,0276332·10 2 ≈1,028·10 2, при цьому вихідний десятковий логарифм приблизно дорівнює логарифму отриманого числа, тобто, приймаємо lg102,76332≈lg1,028·10 2 . Тепер застосовуємо властивості логарифму: lg1,028·10 2 =lg1,028+lg10 2 =lg1,028+2. Нарешті, знаходимо значення логарифму lg1,028 по таблиці десяткових логарифмів lg1,028 0,0086 +0,0034 = 0,012 . У результаті весь процес обчислення логарифму виглядає так: lg102,76332=lg1,0276332·10 2 ≈lg1,028·10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

Насамкінець варто відзначити, що використовуючи таблицю десяткових логарифмів можна обчислити наближене значення будь-якого логарифму. Для цього достатньо за допомогою формули переходу перейти до десяткових логарифмів, знайти їх значення по таблиці, і виконати обчислення, що залишилися.

Наприклад обчислимо log 2 3 . За формулою переходу до нової основи логарифму маємо. З таблиці десяткових логарифмів знаходимо lg3 ≈ 0,4771 та lg2 ≈ 0,3010 . Таким чином, .

Список літератури.

  • Колмогоров А.М., Абрамов А.М., Дудніцин Ю.П. та ін Алгебра та початку аналізу: Підручник для 10 - 11 класів загальноосвітніх установ.
  • Гусєв В.А., Мордкович А.Г. Математика (посібник для вступників до технікумів).