Алгоритм розв'язання дробових нерівностей із логарифмами. Складні логарифмічні нерівності


Вам здається, що до ЄДІ є ще час, і ви встигнете підготуватися? Можливо, це й так. Але в будь-якому випадку, чим раніше школяр починає підготовку, тим успішніше він складає іспити. Сьогодні ми вирішили присвятити статтю логарифмічним нерівностям. Це одне із завдань, а значить, можливість отримати додатковий бал.

Ви знаєте, що таке логарифм(log)? Ми дуже сподіваємося, що так. Але навіть якщо ви не маєте відповіді на це питання, це не проблема. Зрозуміти, що таке логарифм, дуже просто.

Чому саме 4? У такий ступінь потрібно звести число 3, щоб вийшло 81. Коли ви зрозуміли принцип, можна приступати і складніших обчислень.

Нерівності ви проходили ще кілька років тому. І з того часу вони постійно зустрічаються вам у математиці. Якщо у вас є проблеми з розв'язанням нерівностей, ознайомтеся з відповідним розділом.
Тепер, коли ми познайомилися з поняттями окремо, перейдемо до їхнього розгляду загалом.

Найпростіше логарифмічна нерівність.

Найпростіші логарифмічні нерівності не обмежуються цим прикладом, є ще три лише з іншими знаками. Навіщо це потрібно? Щоб повніше зрозуміти, як вирішувати нерівність із логарифмами. Тепер наведемо більш застосовний приклад, все ще досить простий, складні логарифмічні нерівності залишимо потім.

Як це вирішити? Все починається з ОДЗ. Про нього варто знати більше, якщо хочеться завжди легко вирішувати будь-яку нерівність.

Що таке ОДЗ? ОДЗ для логарифмічних нерівностей

Абревіатура розшифровується як область допустимих значень. У завданнях для ЄДІ часто спливає це формулювання. ОДЗ стане вам у нагоді не тільки у випадку логарифмічних нерівностей.

Подивіться ще раз на наведений вище приклад. Ми розглядатимемо ОДЗ, виходячи з нього, щоб ви зрозуміли принцип, і вирішення логарифмічних нерівностей не викликало питань. З визначення логарифму випливає, що 2х+4 має бути більше нуля. У нашому випадку це означає таке.

Це число за визначенням має бути позитивним. Вирішіть нерівність, подану вище. Це можна зробити навіть усно, тут явно, що X не може бути меншим за 2. Вирішення нерівності і буде визначенням області допустимих значень.
Тепер перейдемо до вирішення найпростішої логарифмічної нерівності.

Відкидаємо з обох частин нерівності самі логарифми. Що в результаті залишається? Просте нерівність.

Вирішити його нескладно. X має бути більше -0,5. Тепер поєднуємо два отримані значення системи. Таким чином,

Це і буде область допустимих значень для логарифмічної нерівності, що розглядається.

Навіщо взагалі потрібне ОДЗ? Це можливість відсіяти невірні та неможливі відповіді. Якщо відповідь не входить у область допустимих значень, отже, відповідь просто немає сенсу. Це варто запам'ятати надовго, оскільки в ЄДІ часто трапляється необхідність пошуку ОДЗ, і стосується вона не лише логарифмічних нерівностей.

Алгоритм розв'язання логарифмічної нерівності

Рішення складається з кількох етапів. По-перше, необхідно знайти область допустимих значень. В ОДЗ буде два значення, це ми розглянули вище. Далі потрібно вирішити саму нерівність. Методи вирішення бувають такими:

  • метод заміни множників;
  • декомпозиції;
  • метод раціоналізації.

Залежно від ситуації варто застосовувати один із перерахованих вище методів. Перейдемо безпосередньо до рішення. Розкриємо найпопулярніший метод, який підходить для вирішення завдань ЄДІ практично у всіх випадках. Далі ми розглянемо спосіб декомпозиції. Він може допомогти, якщо трапилася особливо «хитромудра» нерівність. Отже, алгоритм розв'язання логарифмічної нерівності.

Приклади рішення :

Ми не дарма взяли саме таку нерівність! Зверніть увагу на основу. Запам'ятайте: якщо воно більше одиниці, знак залишається незмінним при знаходженні області допустимих значень; інакше потрібно змінити знак нерівності.

В результаті ми отримуємо нерівність:

Тепер наводимо ліву частинудо виду рівняння, що дорівнює нулю. Замість знака "менше" ставимо "рівно", вирішуємо рівняння. Таким чином ми знайдемо ОДЗ. Сподіваємось, що з вирішенням такого простого рівняння у вас не буде проблем. Відповіді -4 та -2. Це ще не все. Потрібно відобразити ці точки на графіці, розставити "+" та "-". Що для цього потрібно зробити? Підставити у вираз числа з інтервалів. Де значення позитивні, там ставимо "+".

Відповідь: не може бути більше -4 і менше -2.

Ми знайшли область допустимих значень тільки для лівої частини, тепер потрібно знайти область допустимих значень правої частини. Це значно легше. Відповідь: -2. Перетинаємо обидві отримані області.

І тільки тепер починаємо вирішувати саму нерівність.

Спростимо його наскільки можливо, щоб вирішувати було легше.

Знову застосовуємо метод інтервалів у рішенні. Опустимо викладки, з ним уже й так усе зрозуміло за попереднім прикладом. Відповідь.

Але цей метод підходить, якщо логарифмічна нерівність має однакові підстави.

Розв'язання логарифмічних рівнянь та нерівностей з різними підставамипередбачає початкове приведення до однієї основи. Далі застосовуйте описаний вище метод. Але є й складніший випадок. Розглянемо один із найскладніших видів логарифмічних нерівностей.

Логарифмічні нерівності зі змінною основою

Як вирішувати нерівності з такими характеристиками? Так, і такі можуть зустрітися у ЄДІ. Вирішення нерівностей нижченаведеним способом теж корисно позначиться на вашому освітньому процесі. Розберемося у питанні докладним чином. Відкинемо теорію, перейдемо одразу до практики. Щоб вирішувати логарифмічні нерівності, достатньо одного разу ознайомитись із прикладом.

Щоб вирішити логарифмічну нерівність представленого виду, необхідно привести праву частину до логарифму з тією самою підставою. Принцип нагадує рівносильні переходи. У результаті нерівність виглядатиме так.

Власне, залишається створити систему нерівностей без логарифмів. Використовуючи метод раціоналізації, переходимо до рівносильної системи нерівностей. Ви зрозумієте і саме правило, коли підставите відповідні значення та простежите їх зміни. У системі будуть такі нерівності.

Скориставшись методом раціоналізації при розв'язанні нерівностей потрібно пам'ятати таке: з підстави необхідно відняти одиницю, х за визначенням логарифму з обох частин нерівності віднімається (праве з лівого), два вирази перемножуються і виставляються під вихідним знаком по відношенню до нуля.

Подальше рішення здійснюється методом інтервалів, тут усе просто. Вам важливо зрозуміти відмінності у методах вирішення, тоді все почне легко виходити.

У логарифмічних нерівностях багато аспектів. Найпростіші їх вирішувати досить легко. Як зробити так, щоб вирішувати кожну з них без проблем? Усі відповіді ви вже отримали у цій статті. Тепер попереду на вас чекає тривала практика. Постійно практикуйтеся у вирішенні найрізноманітніших завдань у рамках іспиту та зможете отримати найвищий бал. Успіхів вам у вашій непростій справі!

Логарифмічні нерівності

На попередніх уроках ми з вами познайомилися з логарифмічними рівняннями, і тепер знаємо, що це таке і як їх вирішувати. А сьогоднішній урок буде присвячено вивченню логарифмічних нерівностей. Що ж це за такі нерівності та у чому різниця між розв'язанням логарифмічного рівняння та нерівності?

Логарифмічні нерівності - це нерівності, які мають змінну, що стоїть під знаком логарифму або на його підставі.

Або ж, можна ще сказати, що логарифмічна нерівність – це така нерівність, в якій її невідома величина, як і в логарифмічному рівнянні, стоятиме під знаком логарифму.

Найпростіші логарифмічні нерівності мають такий вигляд:

де f(x) та g(x) є деякими виразами, які залежать від x.

Давайте це розглянемо такий приклад: f(x)=1+2x+x2, g(x)=3x−1.

Розв'язання логарифмічних нерівностей

Перед розв'язанням логарифмічних нерівностей, варто зазначити, що вони при вирішенні мають схожість з показовими нерівностями, а саме:

По-перше, при переході від логарифмів до виразів, що стоять під знаком логарифму, нам також необхідно порівняти основу логарифму з одиницею;

По-друге, вирішуючи логарифмічну нерівність, використовуючи заміну змінних, нам необхідно вирішувати нерівності щодо заміни до того моменту, поки ми не отримаємо найпростішу нерівність.

Але це ми з вами розглянули подібні моменти розв'язання логарифмічних нерівностей. А зараз звернемо увагу на досить істотну відмінність. Нам з вами відомо, що логарифмічна функція має обмежену область визначення, тому переходячи від логарифмів до виразів, що стоять під знаком логарифму, потрібно брати до уваги область допустимих значень (ОДЗ).

Тобто слід враховувати, що вирішуючи логарифмічне рівняннями з вами можемо спочатку знаходити коріння рівняння, а потім робити перевірку цього рішення. А ось вирішити логарифмічну нерівність так не вийде, оскільки, переходячи від логарифмів до виразів, що стоять під знаком логарифму, необхідно буде записувати ОДЗ нерівності.

До того ж варто запам'ятати, що теорія нерівностей складається з дійсних чисел, якими є позитивні та негативні числа, і навіть число 0.

Наприклад, коли число «а» є позитивним, необхідно використовувати такий запис: a >0. У цьому випадку, як сума, так і добуток цих чисел також будуть позитивними.

Основним принципом розв'язання нерівності є його заміна на простішу нерівність, але головне, щоб вона була рівносильна цьому. Далі, також ми здобули нерівність і знову її замінили на ту, яка має більш простий вигляд і т.д.

Вирішуючи нерівності зі змінною необхідно шукати всі її рішення. Якщо дві нерівності мають одну змінну х, такі нерівності рівносильні, за умови, що й рішення збігаються.

Виконуючи завдання на розв'язання логарифмічних нерівностей, слід запам'ятати, що коли a > 1, то логарифмічна функція зростає, а коли 0< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Способи розв'язання логарифмічних нерівностей

Зараз розглянемо деякі способи, які мають місце під час вирішення логарифмічних нерівностей. Для кращого розуміння та засвоєння, спробуємо у них розібратися на конкретних прикладах.

Нам з вами відомо, що найпростіша логарифмічна нерівність має такий вигляд:

У цій нерівності V є одним з таких знаків нерівності, як:<,>, ≤ або ≥.

Коли основа даного логарифму більше одиниці (a>1), здійснюючи перехід від логарифмів до виразів, що стоять під знаком логарифму, то в цьому варіанті знак нерівності зберігається, і нерівність матиме такий вигляд:

що рівносильно такій системі:


У разі ж, коли основа логарифму більша за нуль і менше одиниці (0

Це рівносильно даній системі:


Подивимося ще приклади вирішення найпростіших логарифмічних нерівностей, наведених на малюнку нижче:



Рішення прикладів

Завдання.Давайте спробуємо вирішити таку ось нерівність:


Вирішення області допустимих значень.


Тепер спробуємо помножити його праву частину на:

Дивимося, що в нас вийде:



Тепер, давайте з вами перейдемо до перетворення підлогарифмічних виразів. У зв'язку з тим, що основа логарифму 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8> 16;
3x > 24;
х > 8.

А з цього випливає, що інтервал, який ми отримали, повністю належить ОДЗ і є вирішенням такої нерівності.

Ось яка відповідь у нас вийшла:


Що необхідно для вирішення логарифмічних нерівностей?

А тепер спробуємо проаналізувати, що нам необхідно для успішного вирішення логарифмічних нерівностей?

По-перше, зосередити всю свою увагу і постаратися не допускати помилок при виконанні перетворень, які дано в цій нерівності. Також слід запам'ятати, що при вирішенні таких нерівностей потрібно не допускати розширень та звужень ОДЗ нерівності, які можуть призвести до втрати або придбання сторонніх рішень.

По-друге, при розв'язанні логарифмічних нерівностей необхідно навчитися мислити логічно та розуміти різницю між такими поняттями, як система нерівностей та сукупність нерівностей, щоб ви без проблем змогли здійснювати відбір розв'язків нерівності, при цьому керуючись її ОДЗ.

По-третє, для успішного розв'язання таких нерівностей кожен з вас повинен добре знати всі властивості елементарних функцій і чітко розуміти їх зміст. До таких функцій відносяться не лише логарифмічні, а й раціональні, статечні, тригонометричні і т.д., одним словом, усі ті, які ви вивчали протягом шкільного навчання алгебри.

Як бачите, вивчивши тему про логарифмічні нерівності, у вирішенні цих нерівностей немає нічого складного за умови, якщо ви будете уважні та наполегливі у досягненні поставленої мети. Щоб у вирішенні нерівностей не виникало жодних проблем, потрібно якнайбільше тренуватися, вирішуючи різні завдання і при цьому запам'ятовувати основні способи вирішення таких нерівностей та їх систем. При невдалих рішеннях логарифмічних нерівностей слід уважно проаналізувати свої помилки, щоб у майбутньому не повертатися до них знову.

Домашнє завдання

Для кращого засвоєння теми та закріплення пройденого матеріалу вирішіть наступні нерівності:


Нерівність називається логарифмічною, якщо в ній міститься логарифмічна функція.

Методи вирішення логарифмічних нерівностей не відрізняються від , крім двох речей.

По-перше, при переході від логарифмічної нерівності до нерівності підлогарифмічних функцій слід стежити за знаком нерівності, що виходить. Він підпорядковується такому правилу.

Якщо основа логарифмічної функції більша за $1$, то при переході від логарифмічної нерівності до нерівності підлогарифмічних функцій знак нерівності зберігається, а якщо менше $1$, то змінюється на протилежний.

По-друге, розв'язання будь-якої нерівності – проміжок, а, отже, наприкінці розв'язання нерівності підлогарифмічних функцій необхідно скласти систему з двох нерівностей: першою нерівністю цієї системи буде нерівність підлогарифмічних функцій, а другим – проміжок області визначення логарифмічних функцій, що входять до логарифмічної нерівності.

практика.

Вирішимо нерівності:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \ x+3>0.$

$x \in (-3;+\infty)$

Основа логарифму дорівнює $2>1$, тому знак не змінюється. Користуючись визначенням логарифму, отримаємо:

$x+3 \geq 2^(3),$

$x \in \)

Дуже важливо!У будь-якій нерівності перехід від виду \(\log_a(⁡f(x)) ˅ \log_a⁡(g(x))\) до порівняння виразів під логарифмами можна робити тільки якщо:


приклад . Розв'язати нерівність: \(\log\)\(≤-1\)

Рішення:

\(\log\) \(_(\frac(1)(3))⁡(\frac(3x-2)(2x-3))\)\(≤-1\)

Випишемо ОДЗ.

ОДЗ: \(\frac(3x-2)(2x-3)\) \(>0\)

\(⁡\frac(3x-2-3(2x-3))(2x-3)\)\(≥\) \(0\)

Розкриваємо дужки, наводимо .

\(⁡\frac(-3x+7)(2x-3)\) \(≥\) \(0\)

Помножуємо нерівність на (-1), не забувши при цьому перевернути знак порівняння.

\(⁡\frac(3x-7)(2x-3)\) \(≤\) \(0\)

\(⁡\frac(3(x-\frac(7)(3)))(2(x-\frac(3)(2)))\)\(≤\) \(0\)

Побудуємо числову вісь і відзначимо на ній точки \(\frac(7)(3)\) і \(\frac(3)(2)\). Зверніть увагу, точка із знаменника – виколота, незважаючи на те, що нерівність не сувора. Справа в тому, що ця точка не буде рішенням, тому що при підстановці в нерівність призведе нас до поділу на нуль.


\(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

Тепер на ту ж числову вісь наносимо ОДЗ і записуємо у відповідь проміжок, який потрапляє в ОДЗ.


Записуємо остаточну відповідь.

Відповідь: \(x∈(\)\(\frac(3)(2)\) \(;\)\(\frac(7)(3)]\)

приклад . Вирішити нерівність: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Рішення:

\(\log^2_3⁡x-\log_3⁡x-2>0\)

Випишемо ОДЗ.

ОДЗ: \(x>0\)

Приступимо до вирішення.

Рішення: \(\log^2_3⁡x-\log_3⁡x-2>0\)

Перед нами типова квадратно-логарифмічна нерівність. Робимо.

\(t=\log_3⁡x\)
\(t^2-t-2>0\)

Розкладаємо ліву частину нерівності на .

\(D=1+8=9\)
\(t_1= \frac(1+3)(2)=2\)
\(t_2=\frac(1-3)(2)=-1\)
\((t+1)(t-2)>0\)

Тепер потрібно повернутись до вихідної змінної – ікса. Для цього перейдемо до , Що має таке ж рішення, і зробимо зворотну заміну.

\(\left[ \begin(gathered) t>2 \\ t<-1 \end{gathered} \right.\) \(\Leftrightarrow\) \(\left[ \begin{gathered} \log_3⁡x>2 \\ \log_3⁡x<-1 \end{gathered} \right.\)

Перетворюємо \(2=\log_3⁡9\), \(-1=\log_3⁡\frac(1)(3)\).

\(\left[ \begin(gathered) \log_3⁡x>\log_39 \\ \log_3⁡x<\log_3\frac{1}{3} \end{gathered} \right.\)

Робимо перехід до порівняння аргументів. Підстави у логарифмів більше (1), тому знак нерівностей не змінюється.

\(\left[ \begin(gathered) x>9 \\ x<\frac{1}{3} \end{gathered} \right.\)

Поєднаємо рішення нерівності та ОДЗ на одному малюнку.


Запишемо відповідь.

Відповідь: \((0; \frac(1)(3))∪(9;∞)\)