Знайдемо дискримінант квадратного рівняння. Квадратні рівняння


Виберіть рубрику Книги Математика Фізика Контроль та керування доступом Пожежна безпекаВимірювання вологості - постачальники в РФ. Вимірювання тиску. Вимірювання витрат. Витратоміри. Вимірювання температури Вимірювання рівнів. Рівноміри. Каналізаційні системи. Постачальники насосів у РФ. Ремонт насосів Трубопровідна арматура. Затвори поворотні (затвори дискові). Зворотні клапани. Регулююча арматура. Фільтри сітчасті, грязьові, магніто-механічні фільтри. Кульові крани. Труби та елементи трубопроводів. Ущільнення різьблення, фланців і т.д. Електродвигуни, електроприводи… Посібник Алфавіти, номінали, одиниці, коди… Алфавіти, в т.ч. грецьку та латинську. Символи. Коди. Альфа, бета, гама, дельта, епсілон… Номінали електричних мереж. Переклад одиниць виміру Децибел. сон. Фон. Одиниці виміру чого? Одиниці вимірювання тиску та вакууму. Переклад одиниць вимірювання тиску та вакууму. Одиниці виміру довжини. Переклад одиниць виміру довжини (лінійного розміру, відстаней). Одиниці виміру обсягу. Переклад одиниць виміру обсягу. Одиниці виміру щільності. Переведення одиниць виміру щільності. Одиниці виміру площі. Переведення одиниць виміру площі. Одиниці виміру твердості. Переклад одиниць виміру твердості. Одиниці виміру температури. Переклад одиниць температур у шкалах Кельвіна (Kelvin) / Цельсія (Celsius) / Фаренгейта (Fahrenheit) / Ранкіна (Rankine) / Делісле (Delisle) / Ньютона (Newton) / Реамюрa Одиниці вимірювання кутів ("кутових розмірів"). Переведення одиниць вимірювання кутової швидкості та кутового прискорення. Стандартні помилкивимірювання Гази різні як робочі середовища. Азот N2 (холодоагент R728) Аміак (холодильний агент R717). Антифризи. Водень H^2 (холодоагент R702) Водяна пара. Повітря (Атмосфера) Газ природний – натуральний газ. Біогаз – каналізаційний газ. Зріджений газ. ШФЛУ. LNG. Пропан-бутан. Кисень O2 (холодоагент R732) Олії та мастила Метан CH4 (холодоагент R50) Властивості води. Чадний газ CO. Монооксид вуглецю. Вуглекислий газ CO2. (Холодильний агент R744). Хлор Cl2 Хлороводень HCl, він же Соляна кислота. Холодильні агенти (холодоагенти). Холодоагент (холодильний агент) R11 - Фтортрихлорметан (CFCI3) Холодагент (Холодильний агент) R12 - Дифтордихлорметан (CF2CCl2) Холодагент (Холодильний агент) R125 - Пентафторетан (CF2HCF3). Холодагент (Холодильний агент) R134а - 1,1,1,2-Тетрафторетан (CF3CFH2). Холодоагент (Холодильний агент) R22 - Дифторхлорметан (CF2ClH) Холодагент (Холодильний агент) R32 - Дифторметан (CH2F2). Холодоагент (Холодильний агент) R407С - R-32 (23%) / R-125 (25%) / R-134a (52%) / Відсотки по масі. інші Матеріали – теплові властивості Абразиви – зернистість, дрібність, шліфувальне обладнання. Ґрунти, земля, пісок та інші породи. Показники розпушування, усадки та щільності ґрунтів та порід. Усадка та розпушування, навантаження. Кути укосу, відвалу. Висоти уступів, відвалів. Деревина. Пиломатеріали. Лісоматеріали. Колоди. Дрова... Кераміка. Клеї та клейові сполуки Лід та сніг (водяний лід) Метали Алюміній та сплави алюмінію Мідь, бронзи та латуні Бронза Латунь Мідь (і класифікація мідних сплавів) Нікель та сплави Відповідність марок сплавів Сталі та сплави Довідкові таблиці ваг металопрокату та труб. +/-5% Вага труби. Вага металу. Механічні властивостісталей. Чавун Мінерали. Азбест. Продукти харчування та харчова сировина. Властивості та ін. Посилання на інший розділ проекту. Гуми, пластики, еластомери, полімери. Докладний описЕластомерів PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/ P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифікований), Опір матеріалів. Супромат. Будівельні матеріали. Фізичні, механічні та теплотехнічні властивості. Бетон. Бетонний розчин. розчин. Будівельна арматура. Сталева та інша. Таблиці застосування матеріалів. Хімічна стійкість. Температурна застосовність. Корозійна стійкість. Ущільнювальні матеріали – герметики з'єднань. PTFE (фторопласт-4) та похідні матеріали. Стрічка ФУМ. Анаеробні клеї Герметики невисихаючі (не застигаючі). Герметики силіконові (кремнійорганічні). Графіт, азбест, пароніти та похідні матеріали Пароніт. Терморозширений графіт (ТРГ, ТМГ), композиції. Властивості. Застосування. Виробництво. Льон сантехнічний Ущільнювачі гумових еластомерів теплоізоляційні матеріали. (посилання на розділ проекту) Інженерні прийоми та поняття Вибухозахист. Захист від дії довкілля. Корозія. Кліматичні виконання (Таблиці сумісності матеріалів) Класи тиску, температури, герметичності Падіння (втрата) тиску. - Інженерне поняття. Протипожежний захист. Пожежі. Теорія автоматичного керування(Регулювання). ТАУ Математичний довідник Арифметична, геометрична прогресії та суми деяких числових рядів. Геометричні фігури. Властивості формули: периметри, площі, об'єми, довжини. Трикутники, прямокутники і т.д. Градуси у радіани. Плоскі фігури. Властивості, сторони, кути, ознаки, периметри, рівність, подоба, хорди, сектори, площі і т.д. Площа неправильних фігур, об'єми неправильних тіл. Середня величина сигналу. Формули та способи розрахунку площі. графіки. Побудова графіків. Читання графіків. Інтегральне та диференціальне обчислення. Табличні похідні та інтеграли. Таблиця похідних. Таблиця інтегралів. Таблиця первісних. Знайти похідну. Знайти інтеграл. Дифури. Комплексні числа. Уявна одиниця. Лінійна алгебра. (Вектори, матриці) Математика для найменших. Дитячий садок- 7 клас. Математична логіка. Розв'язання рівнянь. Квадратні та біквадратні рівняння. Формули. Методи. Рішення диференціальних рівнянь Приклади розв'язків звичайних диференціальних рівнянь порядку вище за перший. Приклади рішень найпростіших = розв'язуваних аналітично звичайних диференціальних рівнянь першого порядку. Системи координат. Прямокутна декартова, полярна, циліндрична та сферична. Двовимірні та тривимірні. Системи числення. Числа та цифри (дійсні, комплексні, ….). Таблиці систем числення. Ступінні ряди Тейлора, Маклорена (= Макларена) і періодичний ряд Фур'є. Розкладання функцій до лав. Таблиці логарифмів та основні формули Таблиці чисельних значень Таблиці Брадіса. Теорія ймовірностей та статистика Тригонометричні функції, формули та графіки. sin, cos, tg, ctg….Значення тригонометричних функцій. Формули наведення тригонометричних функцій. Тригонометричні тотожності. Чисельні методи Обладнання – стандарти, розміри Побутова техніка, домашнє встаткування. Водостічні та водозливні системи. Місткості, баки, резервуари, танки. КВП Контрольно-вимірювальні прилади та автоматика. Вимірювання температури. Конвеєри, стрічкові транспортери. Контейнери (посилання) Кріплення. Лабораторне обладнання. Насоси та насосні станції Насоси для рідин та пульп. Інженерний жаргон. Словник. Просіювання. Фільтрування. Сепарація частинок через сітки та сита. Міцність приблизна мотузок, тросів, шнурів, канатів із різних пластиків. Гумотехнічні вироби. Зчленування та приєднання. Діаметри умовні, номінальні, Ду, DN, NPS та NB. Метричні та дюймові діаметри. SDR. Шпонки та шпонкові пази. Стандарти комунікації. Сигнали в системах автоматизації (КІПіА) Аналогові вхідні та вихідні сигнали приладів, датчиків, витратомірів та пристроїв автоматизації. Інтерфейс підключення. Протоколи зв'язку (комунікації) Телефонний зв'язок. Трубопровідна арматура. Крани, клапани, засувки. Будівельна довжина. Фланці та різьблення. Стандарти. Приєднувальні розміри. Різьблення. Позначення, розміри, використання, типи… (довідкове посилання) З'єднання ("гігієнічні", "асептичні") трубопроводів у харчовій, молочній та фармацевтичній промисловості. Труби, трубопроводи. Діаметри труб та інші характеристики. Вибір діаметра трубопроводу. Швидкість потоку. Витрати. Міцність. Таблиці вибору, Падіння тиску. Труби мідні. Діаметри труб та інші характеристики. Труби полівінілхлоридні (ПВХ). Діаметри труб та інші характеристики. Поліетиленові труби. Діаметри труб та інші характеристики. Труби поліетиленові ПНД. Діаметри труб та інші характеристики. Труби сталеві (в т.ч. нержавіючі). Діаметри труб та інші характеристики. Труби сталеві. Труба нержавіюча Труби із нержавіючої сталі. Діаметри труб та інші характеристики. Труба нержавіюча Труби із вуглецевої сталі. Діаметри труб та інші характеристики. Труби сталеві. фітинги. Фланці за ГОСТ, DIN (EN 1092-1) та ANSI (ASME). З'єднання фланців. Фланцеві з'єднання. Фланцеве з'єднання. Елементи трубопроводів. Електричні лампи Електричні роз'єми та проводи (кабелі) Електродвигуни. Електродвигуни. Електрокомутаційні пристрої. (Посилання на розділ) Стандарти особистого життя інженерів Географія для інженерів. Відстань, маршрути, карти….. Інженери у побуті. Сім'я, діти, відпочинок, одяг та житло. Дітям інженерів. Інженери в офісах. Інженери та інші люди. Соціалізація інженерів. Курйози. Відпочиваючі інженери. Це нас вразило. Інженери та їжа. Рецепти, корисність. Трюки для ресторанів. Міжнародна торгівля інженерам. Вчимося думати барижним чином. Транспорт та подорожі. Особисті автомобілі, велосипеди…. Фізика та хімія людини. Економіка інженерів. Бормотологія фінансистів – людською мовою. Технологічні поняття та креслення Папір письмовий, креслярський, офісний та конверти. Стандартні розмірифотографій. Вентиляція та кондиціювання. Водопостачання та каналізація Гаряче водопостачання (ГВП). Питне водопостачання Стічна вода. Холодне водопостачання Гальванічна промисловість Охолодження Парові лінії/системи. Конденсатні лінії/системи. Паропроводи. Конденсатопроводи. Харчова промисловістьПостачання природного газу Зварювальні метали Символи та позначення обладнання на кресленнях та схемах. Умовні графічні зображення в проектах опалення, вентиляції, кондиціювання повітря та теплохолодопостачання згідно ANSI/ASHRAE Standard 134-2005. Стерилізація обладнання та матеріалів Теплопостачання Електронна промисловість Електропостачання Фізичний довідник Алфавіти. Прийняті позначення. Основні фізичні константи. Вологість абсолютна, відносна та питома. Вологість повітря. Психометричні таблиці. Діаграми Рамзіна. Час В'язкість, Число Рейнольдса (Re). Одиниці виміру в'язкості. Гази. Властивості газів. Індивідуальні постійні газові. Тиск та Вакуум Вакуум Довжина, відстань, лінійний розмір Звук. Ультразвук. Коефіцієнти звукопоглинання (посилання інший розділ) Клімат. Кліматичні дані Природні дані СНіП 23-01-99. Будівельна кліматологія (Статистика кліматичних даних) СНІП 23-01-99. Таблиця 3 - Середня місячна та річна температура повітря, °С. Колишній СРСР. СНІП 23-01-99 Таблиця 1. Кліматичні характеристики холодного періоду року. РФ. СНІП 23-01-99 Таблиця 2. Кліматичні параметри теплого періодуроку. Колишній СРСР. СНІП 23-01-99 Таблиця 2. Кліматичні характеристики теплого періоду року. РФ. СНІП 23-01-99 Таблиця 3. Середня місячна та річна температура повітря, °С. РФ. СНіП 23-01-99. Таблиця 5а * - Середній місячний і річний парціальний тиск водяної пари, гПа = 10^2 Па. РФ. СНіП 23-01-99. Таблиця 1. Кліматичні параметри холодної пори року. Колишній СРСР. Щільності. Вага. Питома вага. Насипна щільність. Поверхневий натяг. Розчинність. Розчинність газів та твердих речовин. Світло та колір. Коефіцієнти відображення, поглинання та заломлення Колірний алфавіт:) - Позначення (кодування) кольору (квітів). Властивості кріогенних матеріалів та середовищ. Таблиці. Коефіцієнти тертя різних матеріалів. Теплові величини, включаючи температури кипіння, плавлення, полум'я і т.д. додаткова інформаціядив: Коефіцієнти (показники) адіабати. Конвекційний та повний теплообмін. Коефіцієнти теплового лінійного розширення, об'ємного теплового розширення. Температури, кипіння, плавлення, інші… Переведення одиниць вимірювання температури. Займистість. Температура розм'якшення. Температури кипіння. Теплопровідність. Коефіцієнти теплопровідності. Термодинаміка. Питома теплотапароутворення (конденсації). Ентальпія пароутворення. Питома теплота згоряння (теплотворна здатність). Потреба у кисні. Електричні та магнітні величини Дипольні моменти електричні. Діелектрична проникність. Електрична стала. Довжини електромагнітних хвиль(довідник іншого розділу) Напруженості магнітного поляПоняття та формули для електрики та магнетизму. Електростатика. П'єзоелектричні модулі. Електрична міцність матеріалів Електричний струмЕлектричний опір та провідність. Електронні потенціали Хімічний довідник "Хімічний алфавіт (словник)" - назви, скорочення, приставки, позначення речовин та сполук. Водні розчини та суміші для обробки металів. Водні розчини для нанесення та видалення металевих покриттів Водні розчини для очищення від нагару (асфальтосмолистого нагару, нагару двигунів) внутрішнього згоряння…) Водні розчини для пасивування. Водні розчини для травлення - видалення оксидів з поверхні Водні розчини для фосфатування Водні розчини та суміші для хімічного оксидування та фарбування металів. Водні розчини та суміші для хімічного полірування Обезжирюючі водні розчини та органічні розчинники Водневий показник pH. Таблиці показників pH. Горіння та вибухи. Окислення та відновлення. Класи, категорії, позначення небезпеки (токсичності) хімічних речовин Періодична система хімічних елементівД.І.Менделєєва. Таблиця Менделєєва. Щільність органічних розчинників (г/см3) залежно від температури. 0-100 °С. Властивості розчинів. Константи дисоціації, кислотності, основності. Розчинність. Суміші. Термічні константи речовин. Ентальпії. Ентропія. Енергії Гіббса… (посилання на хімічний довідник проекту) Електротехніка Регулятори Системи гарантованого та безперебійного електропостачання. Системи диспетчеризації та управління Структуровані кабельні системиЦентри обробки даних

Квадратне рівняння вирішується просто! *Далі у тексті «КУ».Друзі, здавалося б, може бути в математиці простіше, ніж рішення такого рівняння. Але щось мені підказувало, що з ним багато хто має проблеми. Вирішив подивитися скільки показів на запит на місяць видає Яндекс. Ось що вийшло, подивіться:


Що це означає? Це означає те, що близько 70 000 людей на місяць шукають цю інформацію, до чого це літо, а що буде серед навчального року— запитів буде вдвічі більше. Це й не дивно, адже ті хлопці та дівчата, які давно закінчили школу та готуються до ЄДІ, шукають цю інформацію, також і школярі прагнуть освіжити її в пам'яті.

Незважаючи на те, що є маса сайтів, де розповідається як вирішувати це рівняння, я вирішив також зробити свій внесок і опублікувати матеріал. По-перше, хочеться, щоб за цим запитом і на мій сайт приходили відвідувачі; по-друге, в інших статтях, коли зайде мова «КУ» даватиму посилання на цю статтю; по-третє, розповім вам про його рішення трохи більше, ніж зазвичай викладається на інших сайтах. Почнемо!Зміст статті:

Квадратне рівняння – це рівняння виду:

де коефіцієнти a,bі з довільними числами, причому a≠0.

У шкільному курсі матеріал дають у такому вигляді – умовно робиться поділ рівнянь на три класи:

1. Мають два корені.

2. *Мають лише один корінь.

3. Не мають коріння. Тут варто особливо відзначити, що не мають дійсних коренів

Як обчислюється коріння? Просто!

Обчислюємо дискримінант. Під цим «страшним» словом лежить цілком проста формула:

Формули коренів мають такий вигляд:

*Ці формули треба знати напам'ять.

Можна відразу записувати та вирішувати:

Приклад:


1. Якщо D > 0, то рівняння має два корені.

2. Якщо D = 0, то рівняння має один корінь.

3. Якщо D< 0, то уравнение не имеет действительных корней.

Давайте розглянемо рівняння:


З цього приводу, коли дискримінант дорівнює нулю, у шкільному курсі йдеться про те, що виходить один корінь, він дорівнює дев'яти. Все правильно, так і є, але…

Дане уявлення дещо некоректне. Насправді виходить два корені. Так-так, не дивуйтеся, виходить два рівні корені, і якщо бути математично точним, то у відповіді слід записувати два корені:

х 1 = 3 х 2 = 3

Але це так – невеликий відступ. У школі можете записувати та говорити, що корінь один.

Тепер такий приклад:


Як відомо – корінь із негативного числа не витягується, тому рішення у разі немає.

Ось і весь процес розв'язання.

Квадратична функція.

Тут показано, як рішення виглядає геометрично. Це дуже важливо розуміти (надалі в одній із статей ми докладно розбиратимемо рішення квадратної нерівності).

Це функція виду:

де х і у - змінні

a, b, с – задані числа, причому a ≠ 0

Графіком є ​​парабола:

Тобто виходить, що вирішуючи квадратне рівняння при «у» рівному нулю ми знаходимо точки перетину параболи з віссю ох. Цих точок може бути дві (дискримінант позитивний), одна (дискримінант дорівнює нулю) і жодної (дискримінант негативний). Детально про квадратичну функцію можете подивитисьстаттю в Інни Фельдман.

Розглянемо приклади:

Приклад 1: Вирішити 2x 2 +8 x–192=0

а = 2 b = 8 c = -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Відповідь: х 1 = 8 х 2 = -12

*Можна було відразу ж ліву та праву частину рівняння розділити на 2, тобто спростити його. Обчислення будуть простішими.

Приклад 2: Вирішити x 2–22 x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Отримали, що х 1 = 11 та х 2 = 11

У відповіді можна записати х = 11.

Відповідь: х = 11

Приклад 3: Вирішити x 2 -8x + 72 = 0

а = 1 b = -8 c = 72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискримінант негативний, рішення у дійсних числах немає.

Відповідь: рішення немає

Дискримінант негативний. Рішення є!

Тут мова піде про рішення рівняння у разі, коли виходить негативний дискримінант. Ви щось знаєте про комплексні числа? Не буду тут докладно розповідати про те, чому і звідки вони виникли і в чому їхня конкретна роль та необхідність у математиці, це тема для великої окремої статті.

Концепція комплексного числа.

Трохи теорії.

Комплексним числом z називається число виду

z = a + bi

де a і b – дійсні числа, i – так звана уявна одиниця.

a+bi - це ЄДИНЕ ЧИСЛО, а не додавання.

Уявна одиниця дорівнює кореню з мінус одиниці:

Тепер розглянемо рівняння:


Отримали два сполучені корені.

Неповне квадратне рівняння.

Розглянемо окремі випадки, коли коефіцієнт «b» або «с» дорівнює нулю (або обидва рівні нулю). Вони легко вирішуються без будь-яких дискримінантів.

Випадок 1. Коефіцієнт b=0.

Рівняння набуває вигляду:

Перетворюємо:

Приклад:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Випадок 2. Коефіцієнт = 0.

Рівняння набуває вигляду:

Перетворюємо, розкладаємо на множники:

*Твір дорівнює нулю тоді, коли хоча б один із множників дорівнює нулю.

Приклад:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 або x–5 =0

x 1 = 0 x 2 = 5

Випадок 3. Коефіцієнти b = 0 та c = 0.

Тут зрозуміло, що розв'язуванням рівняння завжди буде х = 0.

Корисні властивості та закономірності коефіцієнтів.

Існують властивості, які дозволяють вирішити рівняння з більшими коефіцієнтами.

аx 2 + bx+ c=0 виконується рівність

a + b+ с = 0,то

- якщо для коефіцієнтів рівняння аx 2 + bx+ c=0 виконується рівність

a+ с =b, то

Ці властивості допомагають вирішити певного виду рівняння.

Приклад 1: 5001 x 2 –4995 x – 6=0

Сума коефіцієнтів дорівнює 5001 + ( 4995)+( 6) = 0, отже

Приклад 2: 2501 x 2 +2507 x+6=0

Виконується рівність a+ с =b, значить

Закономірність коефіцієнтів.

1. Якщо в рівнянні ax 2 + bx + c = 0 коефіцієнт "b" дорівнює (а 2 +1), а коефіцієнт "с" чисельно дорівнює коефіцієнту "а", то його коріння дорівнює

аx 2 + (а 2 +1) х + а = 0 = > х 1 = -а х 2 = -1/a.

приклад. Розглянемо рівняння 6х2+37х+6=0.

х 1 = -6 х 2 = -1/6.

2. Якщо в рівнянні ax 2 – bx + c = 0 коефіцієнт «b» дорівнює (а 2 +1), а коефіцієнт «с» чисельно дорівнює коефіцієнту «а», то його коріння дорівнює

аx 2 - (а 2 +1) х + а = 0 = > х 1 = а х 2 = 1/a.

приклад. Розглянемо рівняння 15х2 -226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Якщо у рівнянні ax 2 + bx - c = 0 коефіцієнт "b" дорівнює (a 2 - 1), а коефіцієнт "c" чисельно дорівнює коефіцієнту «a», то його коріння дорівнює

аx 2 + (а 2 -1) х - а = 0 = > х 1 = - а х 2 = 1 / a.

приклад. Розглянемо рівняння 17х2 +288х - 17 = 0.

х 1 = - 17 х 2 = 1/17.

4. Якщо в рівнянні ax 2 – bx – c = 0 коефіцієнт «b» дорівнює (а 2 – 1), а коефіцієнт чисельно дорівнює коефіцієнту «а», то його коріння дорівнює

аx 2 – (а 2 –1) х – а = 0 = > х 1 = а х 2 = – 1/a.

приклад. Розглянемо рівняння 10х2 – 99х –10 = 0.

х 1 = 10 х 2 = - 1/10

Теорема Вієта.

Теорема Вієта називається на ім'я знаменитого французького математика Франсуа Вієта. Використовуючи теорему Вієта, можна виразити суму та добуток коренів довільного КУ через його коефіцієнти.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

У сумі число 14 дають лише 5 та 9. Це коріння. При певному навичці, використовуючи представлену теорему, багато квадратних рівнянь ви можете вирішувати відразу усно.

Теорема Вієта, крім того. зручна тим, що після вирішення квадратного рівняння звичайним способом (через дискримінант) отримане коріння можна перевіряти. Рекомендую робити це завжди.

СПОСІБ ПЕРЕБРОСКИ

При цьому способі коефіцієнт «а» множиться на вільний член, як би «перекидається» до нього, тому його називають способом «перекидання».Цей спосіб застосовують, коли можна легко знайти коріння рівняння, використовуючи теорему Вієта і що найважливіше, коли дискримінант є точний квадрат.

Якщо а± b+c≠ 0, то використовується прийом перекидання, наприклад:

2х 2 – 11х+ 5 = 0 (1) => х 2 – 11х+ 10 = 0 (2)

За теоремою Вієта в рівнянні (2) легко визначити, що х 1 = 10 х 2 = 1

Отримані коріння рівняння необхідно розділити на 2 (оскільки від х 2 «перекидали» двійку), отримаємо

х 1 = 5 х 2 = 0,5.

Яке обґрунтування? Подивіться, що відбувається.

Дискримінанти рівнянь (1) та (2) рівні:

Якщо подивитися на корені рівнянь, то виходять лише різні знаменники, і результат залежить саме від коефіцієнта при х 2:


У другого (зміненого) коріння виходить у 2 рази більше.

Тому результат і ділимо на 2.

*Якщо перекидатимемо трійку, то результат розділимо на 3 і т.д.

Відповідь: х 1 = 5 х 2 = 0,5

Кв. ур-ие та ЄДІ.

Про його важливість скажу коротко - ВИ ПОВИННІ ВМІТИ ВИРІШУВАТИ швидко і не замислюючись, формули коренів і дискримінанта необхідно знати напам'ять. Дуже багато завдань, що входять до складу завдань ЄДІ, зводяться до розв'язання квадратного рівняння (геометричні в тому числі).

Що варто зазначити!

1. Форма запису рівняння може бути «неявною». Наприклад, можливий такий запис:

15+ 9x 2 - 45x = 0 або 15х+42+9x 2 - 45x=0 або 15 -5x+10x 2 = 0.

Вам необхідно привести його до стандартного вигляду(щоб не заплутатися під час вирішення).

2. Пам'ятайте, що x це невідома величина і вона може бути позначена будь-якою іншою літерою - t, q, p, h та іншими.

Завдання на квадратне рівняння вивчаються і у шкільній програмі, і у ВНЗ. Під ними розуміють рівняння виду a * x ^ 2 + b * x + c = 0 де x -змінна, a, b, c – константи; a<>0 . Завдання полягає у відшуканні коренів рівняння.

Геометричний зміст квадратного рівняння

Графіком функції, представленої квадратним рівнянням є парабола. Рішення (коріння) квадратного рівняння - це точки перетину параболи з віссю абсцис (х). З цього випливає, що є три можливі випадки:
1) парабола не має точок перетину з віссю абсцис. Це означає, що вона знаходиться у верхній площині з гілками вгору або нижній з гілками вниз. У таких випадках квадратне рівняння не має дійсних коренів (має два комплексні корені).

2) парабола має одну точку перетину з віссю Ох. Таку точку називають вершиною параболи, а квадратне рівняння в ній набуває свого мінімального або максимального значення. У цьому випадку квадратне рівняння має один дійсний корінь (або два однакові корені).

3) Останній випадок на практиці цікавий більше – існує дві точки перетину параболи з віссю абсцис. Це означає, що існує два дійсних кореня рівняння.

На основі аналізу коефіцієнтів при ступенях змінних можна зробити цікаві висновки щодо розміщення параболи.

1) Якщо коефіцієнт а більший за нуль то парабола спрямована гілками вгору, якщо негативний - гілки параболи спрямовані вниз.

2) Якщо коефіцієнт b більший за нуль то вершина параболи лежить у лівій напівплощині, якщо набуває негативного значення - то у правій.

Висновок формули для розв'язання квадратного рівняння

Перенесемо константу із квадратного рівняння

за знак рівності, отримаємо вираз

Помножимо обидві частини на 4а

Щоб отримати ліворуч повний квадрат додамо в обох частинах b^2 і здійснимо перетворення

Звідси знаходимо

Формула дискримінанта та коріння квадратного рівняння

Дискримінантом називають значення підкореного виразу. Якщо він позитивний, то рівняння має два дійсні корені, що обчислюються за формулою. При нульовому дискримінанті квадратне рівняння має одне рішення (два збігаються корені), які легко отримати з наведеної вище формули при D=0 При негативному дискримінанті рівняння дійсних коренів немає. Проте ісують розв'язки квадратного рівняння у комплексній площині, та їх значення обчислюють за формулою

Теорема Вієта

Розглянемо два корені квадратного рівняння і побудуємо на їх основі квадратне рівняння. З запису легко слідує сама теорема Вієта: якщо маємо квадратне рівняння виду то сума його коренів дорівнює коефіцієнту p, взятому з протилежним знаком, а добуток коренів рівняння дорівнює вільному доданку q. Формульний запис вищесказаного буде мати вигляд Якщо в класичному рівнянні константа а відмінна від нуля, то потрібно розділити на неї все рівняння, а потім застосовувати теорему Вієта.

Розклад квадратного рівняння на множники

Нехай поставлене завдання: розкласти квадратне рівняння на множники. Для його виконання спочатку розв'язуємо рівняння (знаходимо коріння). Далі, знайдене коріння підставляємо у формулу розкладання квадратного рівняння. На цьому завдання буде вирішено.

Завдання на квадратне рівняння

Завдання 1. Знайти коріння квадратного рівняння

x^2-26x+120=0.

Рішення: Запишемо коефіцієнти та підставимо у формулу дискримінанта

Корінь з даного значення дорівнює 14 його легко знайти з калькулятором, або запам'ятати при частому використанніОднак для зручності, наприкінці статті я Вам дам список квадратів чисел, які часто можуть зустрічатися при подібних завданнях.
Знайдене значення підставляємо у формулу коріння

і отримуємо

Завдання 2. Вирішити рівняння

2x2+x-3=0.

Рішення: Маємо повне квадратне рівняння, виписуємо коефіцієнти та знаходимо дискримінант


За відомими формулами знаходимо коріння квадратного рівняння

Завдання 3. Вирішити рівняння

9x2-12x+4=0.

Рішення: Маємо повне квадратне рівняння. Визначаємо дискримінант

Отримали випадок коли коріння збігається. Знаходимо значення коренів за формулою

Завдання 4. Вирішити рівняння

x^2+x-6=0.

Рішення: У випадках коли є малі коефіцієнти при їх доцільно застосовувати теорему Вієта. За її умовою одержуємо два рівняння

З другої умови отримуємо, що твір має дорівнювати -6 . Це означає, що один з коренів негативний. Маємо наступну можливу пару рішень (-3; 2), (3; -2). З урахуванням першої умови другу пару рішень відкидаємо.
Коріння рівняння дорівнює

Завдання 5. Знайти довжини сторін прямокутника, якщо його периметр 18 см, а площа 77 см 2 .

Рішення: Половина периметра прямокутника дорівнює сумі сусідніх сторін. Позначимо х – більшу сторону, тоді 18-x менша його сторона. Площа прямокутника дорівнює добутку цих довжин:
х (18-х) = 77;
або
х 2 -18х +77 = 0.
Знайдемо дискримінант рівняння

Обчислюємо коріння рівняння

Якщо х = 11,то 18-х = 7,навпаки теж справедливо (якщо х=7, то 21-х=9).

Завдання 6. Розкласти квадратне 10x2-11x+3=0 рівняння на множники.

Рішення: Обчислимо коріння рівняння, для цього знаходимо дискримінант

Підставляємо знайдене значення у формулу коренів та обчислюємо

Застосовуємо формулу розкладання квадратного рівняння за корінням

Розкривши дужки отримаємо тотожність.

Квадратне рівняння з параметром

Приклад 1. При яких значеннях параметра а ,рівняння (а-3) х 2 + (3-а) х-1/4 = 0 має один корінь?

Рішення: Прямою підстановкою значення а=3 бачимо, що вона не має рішення. Далі скористаємося тим, що з нульовому дискримінанті рівняння має один корінь кратності 2 . Випишемо дискримінант

спростимо його і прирівняємо до нуля

Отримали квадратне рівняння щодо параметра а рішення якого легко отримати за теоремою Вієта. Сума коренів дорівнює 7 , а їх добуток 12 . Простим перебором встановлюємо, що числа 3,4 будуть корінням рівняння. Оскільки рішення а=3 ми вже відкинули на початку обчислень, єдиним правильним буде - а=4.Таким чином, при а=4 рівняння має один корінь.

Приклад 2. При яких значеннях параметра а ,рівняння а(а+3)х^2+(2а+6)х-3а-9=0має більше одного кореня?

Рішення: Розглянемо спочатку спеціальні точки, ними будуть значення а = 0 і а = -3 . При а = 0 рівняння спроститься до виду 6х-9 = 0; х = 3/2 і буде один корінь. При а=-3 отримаємо тотожність 0=0.
Обчислимо дискримінант

і знайдемо значення а при якому воно позитивне

З першої умови отримаємо а>3. Для другого знаходимо дискримінант та коріння рівняння


Визначимо проміжки де функція набуває позитивних значень. Підстановкою точки а = 0 отримаємо 3>0 . Отже, поза проміжку (-3;1/3) функція негативна. Не варто забувати про точку а = 0,яку слід виключити, оскільки в ній вихідне рівняння має один корінь.
В результаті отримаємо два інтервали, які задовольняють умову задачі

Подібних завдань на практиці буде багато, постарайтеся розібратися із завданнями самостійно та не забувайте враховувати умови, які взаємовиключають один одного. Добре вивчіть формули для вирішення квадратних рівнянь, вони досить часто потрібні при обчисленнях у різних завданнях і науках.


Продовжуємо вивчення теми « вирішення рівнянь». Ми вже познайомилися з лінійними рівняннями та переходимо до знайомства з квадратними рівняннями.

Спочатку ми розберемо, що таке квадратне рівняння, як воно записується в загальному вигляді, і дамо пов'язані визначення. Після цього на прикладах докладно розберемо, як вирішуються неповні квадратні рівняння. Далі перейдемо до розв'язання повних рівнянь, отримаємо формулу коренів, познайомимося з дискримінантом квадратного рівняння та розглянемо розв'язання характерних прикладів. Нарешті, простежимо зв'язок між корінням і коефіцієнтами.

Навігація на сторінці.

Що таке квадратне рівняння? Їхні види

Спочатку треба чітко розуміти, що таке квадратне рівняння. Тому розмову про квадратні рівняння логічно розпочати з визначення квадратного рівняння, а також пов'язаних із ним визначень. Після цього можна розглянути основні види квадратних рівнянь: наведені та ненаведені, а також повні та неповні рівняння.

Визначення та приклади квадратних рівнянь

Визначення.

Квадратне рівняння– це рівняння виду a x 2 + b x + c = 0, де x - змінна, a, b і c - деякі числа, причому a відмінно від нуля.

Відразу скажемо, що квадратні рівняння часто називають рівняннями другого ступеня. Це пов'язано з тим, що квадратне рівняння є алгебраїчним рівняннямдругого ступеня.

Озвучене визначення дозволяє навести приклади квадратних рівнянь. Так 2 x 2 +6 x 1 = 0, 0,2 x 2 +2,5 x +0,03 = 0 і т.п. - Це квадратні рівняння.

Визначення.

Числа a, b і c називають коефіцієнтами квадратного рівняння a x 2 +b x + c = 0 , причому коефіцієнт a називають першим, або старшим, або коефіцієнтом при x 2 b - другим коефіцієнтом, або коефіцієнтом при x , а c - вільним членом.

Наприклад візьмемо квадратне рівняння виду 5·x 2 −2·x−3=0 тут старший коефіцієнт є 5 , другий коефіцієнт дорівнює −2 , а вільний член дорівнює −3 . Зверніть увагу, коли коефіцієнти b та/або c негативні, як у наведеному прикладі, то використовується коротка формазаписи квадратного рівняння виду 5·x 2 −2·x−3=0 , а не 5·x 2 +(−2)·x+(−3)=0 .

Варто зазначити, що коли коефіцієнти a та/або b дорівнюють 1 або −1 , то вони в записі квадратного рівняння зазвичай не присутні явно, що пов'язано з особливостями запису таких . Наприклад, у квадратному рівнянні y 2 −y+3=0 старший коефіцієнт є одиниця, а коефіцієнт при y дорівнює −1 .

Наведені та ненаведені квадратні рівняння

Залежно від значення старшого коефіцієнта розрізняють наведені та ненаведені квадратні рівняння. Дамо відповідні визначення.

Визначення.

Квадратне рівняння, в якому старший коефіцієнт дорівнює 1 називають наведеним квадратним рівнянням. В іншому випадку квадратне рівняння є ненаведеним.

Згідно даному визначеннюквадратні рівняння x 2 −3·x+1=0 , x 2 −x−2/3=0 тощо. – наведені, у кожному їх перший коефіцієнт дорівнює одиниці. А 5·x 2 −x−1=0 і т.п. - Ненаведені квадратні рівняння, їх старші коефіцієнти відмінні від 1 .

Від будь-якого ненаведеного квадратного рівняння за допомогою поділу обох частин на старший коефіцієнт можна перейти до наведеного. Ця дія є рівносильним перетворенням , тобто отримане таким способом наведене квадратне рівняння має те ж коріння, що і вихідне ненаведене квадратне рівняння, або так само як воно, не має коренів.

Розберемо з прикладу, як виконується перехід від ненаведеного квадратного рівняння до наведеного.

приклад.

Від рівняння 3 x 2 +12 x 7 = 0 перейдіть до відповідного наведеного квадратного рівняння.

Рішення.

Нам достатньо виконати розподіл обох частин вихідного рівняння на старший коефіцієнт 3 він відрізняється від нуля, тому ми можемо виконати цю дію. Маємо (3·x 2 +12·x−7):3=0:3 , що те саме, (3·x 2):3+(12·x):3−7:3=0 , і далі (3:3) · x 2 + (12:3) · x-7: 3 = 0, звідки. Так ми отримали наведене квадратне рівняння, рівносильне вихідному.

Відповідь:

Повні та неповні квадратні рівняння

У визначенні квадратного рівняння є умова a≠0 . Ця умова потрібна для того, щоб рівняння a x 2 + b x + c = 0 було саме квадратним, так як при a = 0 воно фактично стає лінійним рівнянням виду b x + c = 0 .

Що стосується коефіцієнтів b і c, то вони можуть дорівнювати нулю, причому як окремо, так і разом. У таких випадках квадратне рівняння називають неповним.

Визначення.

Квадратне рівняння a x 2 + b x + c = 0 називають неповнимякщо хоча б один з коефіцієнтів b , c дорівнює нулю.

В свою чергу

Визначення.

Повне квадратне рівняння- Це рівняння, у якого всі коефіцієнти відмінні від нуля.

Такі назви дано не випадково. З наступних міркувань це стане зрозумілим.

Якщо коефіцієнт b дорівнює нулю, то квадратне рівняння набуває вигляду a x 2 +0 x + c = 0 і воно рівносильне рівнянню a x 2 + c = 0 . Якщо c = 0, тобто, квадратне рівняння має вигляд a x 2 + b x + 0 = 0, то його можна переписати як a x 2 + b x = 0 . А при b = 0 і c = 0 ми отримаємо квадратне рівняння a x 2 = 0 . Отримані рівняння відрізняються від повного квадратного рівняння тим, що їх ліві частини не містять або доданку зі змінною x, або вільного члена, або того й іншого. Звідси та його назва – неповні квадратні рівняння.

Так рівняння x 2 +x+1=0 і −2·x 2 −5·x+0,2=0 – це приклади повних квадратних рівнянь, а x 2 =0 , −2·x 2 =0 , 5·x 2 +3=0 , −x 2 −5·x=0 – це неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

З інформації попереднього пункту випливає, що існує три види неповних квадратних рівнянь:

  • a x 2 = 0, йому відповідають коефіцієнти b = 0 і c = 0;
  • a x 2 + c = 0, коли b = 0;
  • і a x 2 + b x = 0 , коли c = 0 .

Розберемо по порядку, як вирішуються неповні квадратні рівняння кожного з цих видів.

a x 2 = 0

Почнемо з розв'язання неповних квадратних рівнянь, у яких коефіцієнти b і c дорівнюють нулю, тобто з рівнянь виду a x 2 =0 . Рівнянню a x 2 = 0 рівносильне рівняння x 2 = 0, яке виходить з вихідного розподілом його обох частин на відмінне від нуля число a. Вочевидь, коренем рівняння x 2 =0 є нуль, оскільки 0 2 =0 . Іншого коріння це рівняння немає, що пояснюється , дійсно, для будь-якого відмінного від нуля числа p має місце нерівність p 2 >0 , звідки випливає, що при p≠0 рівність p 2 =0 ніколи не досягається.

Отже, неповне квадратне рівняння a x 2 = 0 має єдиний корінь x = 0 .

Як приклад наведемо розв'язок неповного квадратного рівняння −4·x 2 =0 . Йому рівносильне рівняння x 2 =0 його єдиним коренем є x=0 , отже, і вихідне рівняння має єдиний корінь нуль.

Коротке рішення в цьому випадку можна оформити так:
−4·x 2 =0 ,
x 2 = 0,
x=0.

a x 2 +c=0

Тепер розглянемо, як розв'язуються неповні квадратні рівняння, в яких коефіцієнт b дорівнює нулю, а c 0 , тобто рівняння виду a x 2 + c = 0 . Ми знаємо, що перенесення доданку з однієї частини рівняння в іншу з протилежним знаком, а також розподіл обох частин рівняння на відмінне від нуля число дають рівносильне рівняння. Тому можна провести наступні рівносильні перетворення неповного квадратного рівняння a x 2 + c = 0 :

  • перенести c у праву частину, що дає рівняння a x 2 = -c ,
  • і розділити обидві його частини на a, отримуємо.

Отримане рівняння дозволяє зробити висновки про його коріння. Залежно від значень a і c значення виразу може бути негативним (наприклад, якщо a=1 і c=2 , то ) або позитивним, (наприклад, якщо a=−2 і c=6 , то ), воно не дорівнює нулю , оскільки за умовою c≠0. Окремо розберемо випадки та .

Якщо , то рівняння немає коріння. Це твердження випливає з того, що квадрат будь-якого числа є невід'ємним числом. З цього випливає, що коли , то ні для якого числа p рівність не може бути вірною.

Якщо , то справа з корінням рівняння йде інакше. У цьому випадку, якщо згадати про , то відразу стає очевидним корінь рівняння , ним є число , оскільки . Неважко здогадатися, як і число теж є коренем рівняння , дійсно, . Іншого коріння це рівняння не має, що можна показати, наприклад, методом від протилежного. Зробимо це.

Позначимо щойно озвучені коріння рівняння як x 1 і −x 1 . Припустимо, що рівняння має ще один корінь x 2 відмінний від зазначених коренів x 1 і −x 1 . Відомо, що підстановка рівняння замість x його коренів звертає рівняння вірну числову рівність . Для x 1 і −x 1 маємо, а для x 2 маємо. Властивості числових рівностей нам дозволяють виконувати почленное віднімання вірних числових рівностей, так віднімання відповідних частин рівностей і дає x 1 2 −x 2 2 =0 . Властивості дій з числами дозволяють переписати отриману рівність як (x 1 -x 2) · (x 1 + x 2) = 0 . Ми знаємо, що добуток двох чисел дорівнює нулю тоді і тільки тоді, коли хоча б одне з них дорівнює нулю. Отже, з отриманої рівності випливає, що x 1 −x 2 =0 та/або x 1 +x 2 =0 , що те саме, x 2 =x 1 та/або x 2 =−x 1 . Так ми дійшли протиріччя, оскільки спочатку сказали, що корінь рівняння x 2 відмінний від x 1 і −x 1 . Цим доведено, що рівняння не має іншого коріння, окрім і .

Узагальним інформацію цього пункту. Неповне квадратне рівняння a x 2 +c=0 рівносильне рівнянню , яке

  • не має коріння, якщо ,
  • має два корені і, якщо.

Розглянемо приклади розв'язання неповних квадратних рівнянь виду a x 2 + c = 0 .

Почнемо з квадратного рівняння 9 x 2 +7 = 0 . Після перенесення вільного члена в праву частину рівняння, воно набуде вигляду 9·x 2 =−7 . Розділивши обидві частини отриманого рівняння на 9, прийдемо до. Так як у правій частині вийшло негативне число, то це рівняння не має коріння, отже, і вихідне неповне квадратне рівняння 9 x 2 +7 = 0 не має коренів.

Розв'яжемо ще одне неповне квадратне рівняння −x 2 +9=0 . Переносимо дев'ятку до правої частини: −x 2 =−9 . Тепер ділимо обидві частини на −1, отримуємо х 2 =9. У правій частині є позитивне число, звідки укладаємо, що або . Після цього записуємо остаточну відповідь: неповне квадратне рівняння −x 2 +9=0 має два корені x=3 або x=−3 .

a x 2 + b x = 0

Залишилося розібратися з рішенням останнього виду неповних квадратних рівнянь при c=0. Неповні квадратні рівняння виду a x 2 + b x = 0 дозволяє вирішити метод розкладання на множники. Очевидно, ми можемо , що знаходиться в лівій частині рівняння, для чого достатньо винести за дужки загальний множник x . Це дозволяє перейти від вихідного неповного квадратного рівняння до рівносильному рівняннювиду x · (a · x + b) = 0 . І це рівняння рівносильно сукупності двох рівнянь x=0 і a·x+b=0 , останнє є лінійним і має корінь x=−b/a .

Отже, неповне квадратне рівняння a x 2 + b x = 0 має два корені x = 0 і x = - b / a .

Для закріплення матеріалу розберемо рішення конкретного прикладу.

приклад.

Розв'яжіть рівняння.

Рішення.

Виносимо x за дужки, це дає рівняння. Воно рівносильне двом рівнянням x = 0 і . Вирішуємо отримане лінійне рівняння: , Виконавши поділ змішаного числа на звичайну дріб, знаходимо . Отже, корінням вихідного рівняння є x = 0 і .

Після отримання необхідної практики рішення таких рівнянь можна записувати коротко:

Відповідь:

x = 0 .

Дискримінант, формула коренів квадратного рівняння

Для розв'язання квадратних рівнянь існує формула коренів. Запишемо формулу коренів квадратного рівняння: , де D=b 2 −4·a·c- так званий дискримінант квадратного рівняння. Запис по суті означає, що .

Корисно знати, як було отримано формула коренів, і як вона застосовується під час знаходження коренів квадратних рівнянь. Розберемося із цим.

Висновок формули коріння квадратного рівняння

Нехай нам потрібно вирішити квадратне рівняння a x 2 + b x + c = 0 . Виконаємо деякі рівносильні перетворення:

  • Обидві частини цього рівняння ми можемо розділити на відмінне від нуля число a, в результаті отримаємо квадратне рівняння.
  • Тепер виділимо повний квадрату його лівій частині: . Після цього рівняння набуде вигляду.
  • На цьому етапі можна здійснити перенесення двох останніх доданків у праву частину із протилежним знаком, маємо .
  • І ще перетворимо вираз, що опинилося у правій частині: .

У результаті ми приходимо до рівняння, яке рівносильне вихідному квадратному рівнянню a x 2 + b x + c = 0 .

Аналогічні за формою рівняння ми вирішували в попередніх пунктах, коли розбирали . Це дозволяє зробити такі висновки, що стосуються коренів рівняння:

  • якщо , то рівняння немає дійсних рішень;
  • якщо , то рівняння має вигляд , отже , звідки видно його єдиний корінь ;
  • якщо , те чи , що те саме чи , тобто, рівняння має два корені.

Отже, наявність чи відсутність коренів рівняння , отже, і вихідного квадратного рівняння, залежить від знака виразу , що стоїть правої частини. У свою чергу знак цього виразу визначається знаком чисельника, оскільки знаменник 4·a 2 завжди позитивний, тобто, знаком виразу b 2 −4·a·c . Цей вираз b 2 −4·a·c назвали дискримінантом квадратного рівнянняі позначили буквою D. Звідси зрозуміла суть дискримінанта - за його значенням і знаком роблять висновок, чи має квадратне рівняння дійсне коріння, і якщо має, то яке їх кількість - один або два.

Повертаємося до рівняння , перепишемо з використанням позначення дискримінанта: . І робимо висновки:

  • якщо D<0 , то это уравнение не имеет действительных корней;
  • якщо D=0 , це рівняння має єдиний корінь ;
  • нарешті, якщо D>0 , то рівняння має два корені або , які можна переписати у вигляді або , а після розкриття і приведення дробів до спільного знаменника отримуємо .

Так ми вивели формули коренів квадратного рівняння, вони мають вигляд де дискримінант D обчислюється за формулою D=b 2 −4·a·c .

З їх допомогою при позитивному дискримінанті можна обчислити обидва дійсні корені квадратного рівняння. При рівному нулю дискримінанті обидві формули дають те саме значення кореня, що відповідає єдиному рішенню квадратного рівняння. А при негативному дискримінанті при спробі скористатися формулою коренів квадратного рівняння ми стикаємося із вилученням квадратного кореня з негативного числа, що виводить нас за рамки та шкільні програми. При негативному дискримінанті квадратне рівняння не має дійсних коренів, але має пару комплексно пов'язанихкоренів, які можна знайти за тими самими отриманими нами формулами коренів .

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Насправді при розв'язанні квадратних рівняння можна одночасно використовувати формулу коренів, з допомогою якої обчислити їх значення. Але це більше ставиться до знаходження комплексного коріння.

Однак у шкільному курсі алгебри зазвичай йдеться не про комплексне, а про дійсне коріння квадратного рівняння. У цьому випадку доцільно перед використанням формул коренів квадратного рівняння попередньо знайти дискримінант, переконатися, що він невід'ємний (інакше можна робити висновок, що рівняння не має дійсних коренів), і вже після цього обчислювати значення коренів.

Наведені міркування дозволяють записати алгоритм розв'язання квадратного рівняння. Щоб розв'язати квадратне рівняння a x 2 + b x + c = 0, треба:

  • за формулою дискримінанта D=b 2 −4·a·c обчислити його значення;
  • зробити висновок, що квадратне рівняння не має дійсних коренів, якщо дискримінант негативний;
  • обчислити єдиний корінь рівняння за такою формулою , якщо D=0 ;
  • знайти два дійсних кореня квадратного рівняння за формулою коренів, якщо дискримінант позитивний.

Тут лише зауважимо, що з рівному нулю дискримінанту можна використовувати формулу , вона дасть те значення, як і .

Можна переходити до прикладів застосування алгоритму розв'язання квадратних рівнянь.

Приклади розв'язання квадратних рівнянь

Розглянемо розв'язки трьох квадратних рівнянь із позитивним, негативним та рівним нулю дискримінантом. Розібравшись з їх розв'язанням, за аналогією можна буде вирішити будь-яке інше квадратне рівняння. Почнемо.

приклад.

Знайдіть корені рівняння x 2 +2·x−6=0.

Рішення.

І тут маємо такі коефіцієнти квадратного рівняння: a=1 , b=2 і c=−6 . Відповідно до алгоритму, спочатку треба обчислити дискримінант, для цього підставляємо зазначені a, b і c у формулу дискримінанта, маємо D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Так як 28>0, тобто, дискримінант більше нуля, то квадратне рівняння має два дійсні корені. Знайдемо їх за формулою коренів, отримуємо, тут можна спростити отримані вирази, виконавши винесення множника за знак кореняз подальшим скороченням дробу:

Відповідь:

Переходимо до такого характерного прикладу.

приклад.

Розв'яжіть квадратне рівняння −4·x 2 +28·x−49=0 .

Рішення.

Починаємо з знаходження дискримінанта: D=28 2 −4·(−4)·(−49)=784−784=0. Отже, це квадратне рівняння має єдиний корінь, який знаходимо як , тобто,

Відповідь:

x = 3,5.

Залишається розглянути розв'язання квадратних рівнянь із негативним дискримінантом.

приклад.

Розв'яжіть рівняння 5·y 2 +6·y+2=0 .

Рішення.

Тут такі коефіцієнти квадратного рівняння: a = 5, b = 6 і c = 2. Підставляємо ці значення у формулу дискримінанта, маємо D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Дискримінант негативний, отже, дане квадратне рівняння немає дійсних коренів.

Якщо ж потрібно вказати комплексне коріння, то застосовуємо відому формулу коренів квадратного рівняння і виконуємо дії з комплексними числами :

Відповідь:

дійсних коренів немає, комплексні коріння такі: .

Ще раз відзначимо, що якщо дискримінант квадратного рівняння негативний, то в школі зазвичай відразу записують відповідь, в якій вказують, що дійсних коренів немає, і не знаходять комплексного коріння.

Формула коренів для парних других коефіцієнтів

Формула коренів квадратного рівняння , де D=b 2 −4·a·c дозволяє одержати формулу більше компактного вигляду, що дозволяє вирішувати квадратні рівняння з парним коефіцієнтом при x (або просто з коефіцієнтом, що має вигляд 2·n , наприклад, або 14·ln5=2·7·ln5 ). Виведемо її.

Допустимо нам потрібно вирішити квадратне рівняння виду a x 2 +2 x x c = 0 . Знайдемо його коріння з використанням відомої формули. Для цього обчислюємо дискримінант D=(2·n) 2 −4·a·c=4·n 2 −4·a·c=4·(n 2 −a·c), і далі використовуємо формулу коренів:

Позначимо вираз n 2 −a·c як D 1 (іноді його позначають D" ). Тоді формула коренів аналізованого квадратного рівняння з другим коефіцієнтом 2·n набуде вигляду де D 1 =n 2 −a·c .

Нескладно помітити, що D=4·D 1 або D 1 =D/4 . Іншими словами, D1 – це четверта частина дискримінанта. Зрозуміло, що знак D 1 такий самий, як знак D . Тобто знак D 1 також є індикатором наявності або відсутності коренів квадратного рівняння.

Отже, щоб розв'язати квадратне рівняння з другим коефіцієнтом 2n, треба

  • Обчислити D 1 =n 2 −a·c;
  • Якщо D 1<0 , то сделать вывод, что действительных корней нет;
  • Якщо D 1 =0, то обчислити єдиний корінь рівняння за формулою;
  • Якщо ж D 1 >0, то знайти два дійсних кореня за формулою.

Розглянемо рішення прикладу з використанням отриманої у цьому пункті формули коренів.

приклад.

Розв'яжіть квадратне рівняння 5·x 2 −6·x−32=0 .

Рішення.

Другий коефіцієнт цього рівняння можна як 2·(−3) . Тобто, можна переписати вихідне квадратне рівняння у вигляді 5·x 2 +2·(−3)·x−32=0 , тут a=5 , n=−3 та c=−32 і обчислити четверту частину дискримінанта: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Так як його значення позитивне, то рівняння має два дійсні корені. Знайдемо їх, використовуючи відповідну формулу коренів:

Зауважимо, що можна було використовувати звичайну формулу коренів квадратного рівняння, але в цьому випадку довелося б виконати більший обсяг обчислювальної роботи.

Відповідь:

Спрощення виду квадратних рівнянь

Деколи, перш ніж пускатися в обчислення коренів квадратного рівняння за формулами, не завадить запитати себе: «А чи не можна спростити вигляд цього рівняння»? Погодьтеся, що в плані обчислень простіше буде вирішити квадратне рівняння 11 x 2 −4 x 6 = 0, ніж 1100 x 2 −400 x 600 = 0 .

Зазвичай спрощення виду квадратного рівняння досягається шляхом множення або розподілу обох частин на деяке число. Наприклад, у попередньому абзаці вдалося досягти спрощення рівняння 1100 x 2 −400 x 600=0 розділивши обидві його частини на 100 .

Подібне перетворення проводять із квадратними рівняннями, коефіцієнти якого не є . При цьому зазвичай ділять обидві частини рівняння на абсолютних величинйого коефіцієнтів. Наприклад візьмемо квадратне рівняння 12 x 2 −42 x 48 = 0 . абсолютних величин його коефіцієнтів: НОД (12, 42, 48) = НОД (НОД (12, 42), 48) = НОД (6, 48) = 6 . Розділивши обидві частини вихідного квадратного рівняння на 6, ми прийдемо до рівносильного йому квадратного рівняння 2 x 2 -7 x + 8 = 0 .

А множення обох частин квадратного рівняння зазвичай провадиться для позбавлення від дробових коефіцієнтів. У цьому множення проводять на знаменників його коефіцієнтів. Наприклад, якщо обидві частини квадратного рівняння помножити на НОК(6, 3, 1)=6 , воно набуде простіший вигляд x 2 +4·x−18=0 .

На закінчення цього пункту зауважимо, що майже завжди позбавляються мінуса при старшому коефіцієнті квадратного рівняння, змінюючи знаки всіх членів, що відповідає множенню (або поділу) обох частин на −1 . Наприклад, зазвичай від квадратного рівняння −2·x 2 −3·x+7=0 переходять до рішення 2·x 2 +3·x−7=0 .

Зв'язок між корінням та коефіцієнтами квадратного рівняння

Формула коріння квадратного рівняння виражає коріння рівняння через його коефіцієнти. Відштовхуючись від формули коренів, можна отримати інші залежності між корінням та коефіцієнтами.

Найбільш відомі та застосовні формули з теореми Вієта виду та . Зокрема, для наведеного квадратного рівняння сума коренів дорівнює другому коефіцієнту з протилежним знаком, а добуток коріння – вільному члену. Наприклад, у вигляді квадратного рівняння 3·x 2 −7·x+22=0 можна відразу сказати, що його коренів дорівнює 7/3 , а добуток коренів дорівнює 22/3 .

Використовуючи вже записані формули можна отримати і ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, можна виразити суму квадратів коренів квадратного рівняння через його коефіцієнти: .

Список літератури.

  • Алгебра:навч. для 8 кл. загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2008. – 271 с. : іл. - ISBN 978-5-09-019243-9.
  • Мордковіч А. Г.Алгебра. 8 клас. У 2 ч. ч. 1. Підручник для учнів загальноосвітніх установ / А. Г. Мордкович. - 11-те вид., стер. – К.: Мнемозіна, 2009. – 215 с.: іл. ISBN 978-5-346-01155-2.

У суспільстві вміння робити дії з рівняннями, що містять змінну, зведену в квадрат, може стати у нагоді у багатьох галузях діяльності і широко застосовується практично у наукових і технічних розробках. Свідченням цього може бути конструювання морських і річкових суден, літаків і ракет. За допомогою подібних розрахунків визначають траєкторії переміщення різних тіл, у тому числі і космічних об'єктів. Приклади з розв'язанням квадратних рівнянь знаходять застосування не тільки в економічному прогнозуванні, при проектуванні та будівництві будівель, а й у звичайних життєвих обставинах. Вони можуть знадобитися в туристичних походах, на спортивних змаганнях, в магазинах при здійсненні покупок та інших досить поширених ситуаціях.

Розіб'ємо вираз на складові множники

Ступінь рівняння визначається максимальним значенням ступеня у змінної, яку містить цей вираз. Якщо вона дорівнює 2, то подібне рівняння якраз і називається квадратним.

Якщо говорити мовою формул, то зазначені вирази, хоч би як вони виглядали, завжди можна привести до вигляду, коли ліва частинавирази складається з трьох доданків. Серед них: ax 2 (тобто змінна, зведена квадрат зі своїм коефіцієнтом), bx (невідоме без квадрата зі своїм коефіцієнтом) і c (вільна складова, тобто звичайне число). Все це в правій частині дорівнює 0. У випадку, коли у такого багаточлена відсутня одна з його складових доданків, за винятком ax 2 воно називається неповним квадратним рівнянням. Приклади з вирішенням таких завдань, значення змінних у яких знайти нескладно, слід розглянути насамперед.

Якщо вираз на вигляд виглядає таким чином, що доданків у виразу в правій частині два, точніше ax 2 і bx, найлегше відшукати їх винесенням змінної за дужки. Тепер наше рівняння виглядатиме так: x(ax+b). Далі стає очевидним, що або х=0, або завдання зводиться до знаходження змінної з наступного виразу: ax+b=0. Зазначене продиктовано однією з властивостей множення. Правило говорить, що добуток двох множників дає в результаті 0 тільки якщо один з них дорівнює нулю.

приклад

x = 0 або 8х - 3 = 0

В результаті одержуємо два корені рівняння: 0 та 0,375.

Рівняння такого роду можуть описувати переміщення тіл під дією сили тяжкості, які почали рух з певної точки, прийнятої початку координат. Тут математичний записнабуває наступної форми: y = v 0 t + gt 2 /2. Підставивши необхідні значення, прирівнявши праву частину 0 і знайшовши можливі невідомі, можна дізнатися про час, що проходить з моменту підйому тіла до моменту його падіння, а також багато інших величин. Але про це ми поговоримо пізніше.

Розкладання виразу на множники

Описане вище правило дає можливість вирішувати зазначені завдання й у складніших випадках. Розглянемо приклади із розв'язанням квадратних рівнянь такого типу.

X 2 - 33x + 200 = 0

Цей квадратний тричлен є повним. Спочатку перетворимо вираз і розкладемо його на множники. Їх виходить два: (x-8) і (x-25) = 0. У результаті маємо два корені 8 та 25.

Приклади з розв'язанням квадратних рівнянь у 9 класі дозволяють цим методом знаходити змінну у виразах не тільки другого, а й третього та четвертого порядків.

Наприклад: 2x 3 + 2x 2 - 18x - 18 = 0. При розкладанні правої частини на множники зі змінною їх виходить три, тобто (x+1),(x-3) і (x+3).

В результаті стає очевидним, що дане рівняння має три корені: -3; -1; 3.

Вилучення квадратного кореня

Іншим випадком неповного рівняння другого порядку є вираз, мовою букв представлене таким чином, що права частина будується зі складових ax 2 і c. Тут для отримання значення змінної вільний член переноситься у праву сторону, а потім з обох частин рівності витягується квадратний корінь. Слід звернути увагу, що й у разі коренів рівняння зазвичай буває два. Винятком можуть бути лише рівності, взагалі які містять доданок з, де змінна дорівнює нулю, і навіть варіанти висловів, коли права частина виявляється негативною. У разі рішень взагалі немає, оскільки зазначені вище дії неможливо проводити з корінням. Приклади розв'язків квадратних рівнянь такого типу слід розглянути.

У разі корінням рівняння виявляться числа -4 і 4.

Обчислення пощади земельної ділянки

Потреба в подібних обчисленнях з'явилася в давнину, адже розвиток математики багато в чому далекі часибуло зумовлено необхідністю визначати з найбільшою точністю площі та периметри земельних ділянок.

Приклади з розв'язанням квадратних рівнянь, складених на основі таких завдань, слід розглянути і нам.

Отже, допустимо є прямокутна ділянка землі, довжина якої на 16 метрів більша, ніж ширина. Слід знайти довжину, ширину та периметр ділянки, якщо відомо, що його площа дорівнює 612 м 2 .

Приступаючи до справи, спершу складемо необхідне рівняння. Позначимо за x ширину ділянки, тоді його довжина виявиться (х +16). З написаного випливає, що площа визначається виразом х(х+16), що згідно з умовою нашого завдання становить 612. Це означає, що х(х+16) = 612.

Вирішення повних квадратних рівнянь, а даний вираз є саме таким, не може виконуватися колишнім способом. Чому? Хоча ліва частина його, як і раніше, містить два множники, добуток їх зовсім не дорівнює 0, тому тут застосовуються інші методи.

Дискримінант

Насамперед зробимо необхідні перетворення, тоді зовнішній виглядданого виразу буде виглядати таким чином: x 2 + 16x - 612 = 0. Це означає, що ми отримали вираз у формі, що відповідає зазначеному раніше стандарту, де a=1, b=16, c=-612.

Це може стати прикладом розв'язання квадратних рівнянь через дискримінант. Тут необхідні розрахункивиробляються за схемою: D = b 2 – 4ac. Ця допоміжна величина не просто дає можливість знайти шукані величини в рівнянні другого порядку, вона визначає кількість можливих варіантів. Якщо D>0, їх два; при D = 0 існує один корінь. У випадку, якщо D<0, никаких шансов для решения у уравнения вообще не имеется.

Про коріння та його формулу

У разі дискримінант дорівнює: 256 - 4(-612) = 2704. Це свідчить, що у нашого завдання існує. Якщо знати, до , Розв'язання квадратних рівнянь потрібно продовжувати із застосуванням нижче наведеної формули. Вона дозволяє обчислити коріння.

Це означає, що у цьому випадку: x 1 =18, x 2 =-34. Другий варіант у цій дилемі не може бути рішенням, тому що розміри земельної ділянки не можуть вимірюватися в негативних величинах, отже х (тобто ширина ділянки) дорівнює 18 м. Звідси обчислюємо довжину: 18+16=34 і периметр 2(34+ 18) = 104 (м 2).

Приклади та завдання

Продовжуємо вивчення квадратних рівнянь. Приклади та детальне рішення кількох з них будуть наведені далі.

1) 15x2+20x+5=12x2+27x+1

Перенесемо все в ліву частину рівності, зробимо перетворення, тобто отримаємо вид рівняння, який прийнято називати стандартним, і прирівняємо його нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Склавши подібні, визначимо дискримінант: D = 49 - 48 = 1. Значить у нашого рівняння буде два корені. Обчислимо їх згідно з наведеною вище формулою, а це означає, що перший з них дорівнюватиме 4/3, а другий 1.

2) Тепер розкриємо загадки іншого.

З'ясуємо, чи взагалі є тут коріння x 2 - 4x + 5 = 1? Для отримання вичерпної відповіді наведемо багаточлен до відповідного звичного вигляду та обчислимо дискримінант. У вказаному прикладі рішення квадратного рівняння виконувати не обов'язково, адже суть завдання полягає зовсім не в цьому. У разі D = 16 - 20 = -4, отже, коріння дійсно немає.

Теорема Вієта

Квадратні рівняння зручно вирішувати через зазначені вище формули і дискримінант, коли значення останнього витягується квадратний корінь. Але це не завжди. Проте способів отримання значень змінних у разі існує безліч. Приклад: розв'язання квадратних рівнянь з теореми Вієта. Вона названа на честь який жив у XVI столітті у Франції та зробив блискучу кар'єру завдяки своєму математичному таланту та зв'язкам при дворі. Портрет його можна побачити у статті.

Закономірність, яку помітив уславлений француз, полягала в наступному. Він довів, що коріння рівняння у сумі чисельно дорівнює -p=b/a, які твір відповідає q=c/a.

Тепер розглянемо конкретні завдання.

3x 2 + 21x - 54 = 0

Для простоти перетворюємо вираз:

x 2 + 7x - 18 = 0

Скористаємося теоремою Вієта, це дасть нам таке: сума коренів дорівнює -7, а їх твір -18. Звідси отримаємо, що корінням рівняння є числа -9 і 2. Зробивши перевірку, переконаємося, що ці значення змінних справді підходять у вираз.

Графік та рівняння параболи

Поняття квадратичні функції і квадратні рівняння тісно пов'язані. Приклади подібного вже наведено раніше. Тепер розглянемо деякі математичні загадки трохи докладніше. Будь-яке рівняння описуваного типу можна наочно. Така залежність, намальована як графіка, називається параболою. Різні її види представлені малюнку нижче.

Будь-яка парабола має вершину, тобто точку, з якої виходять її гілки. Якщо a>0, вони йдуть високо в нескінченність, а коли a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наочні зображення функцій допомагають вирішувати будь-які рівняння, зокрема квадратні. Цей метод називається графічним. А значенням змінної х є координата абсцис у точках, де відбувається перетин лінії графіка з 0x. Координати вершини можна дізнатися за щойно наведеною формулою x 0 = -b/2a. І, підставивши отримане значення початкове рівняння функції, можна дізнатися y 0 , тобто другу координату вершини параболи, що належить осі ординат.

Перетин гілок параболи з віссю абсцис

Прикладів із розв'язанням квадратних рівнянь дуже багато, але існують і загальні закономірності. Розглянемо їх. Зрозуміло, що перетин графіка з віссю 0x при a>0 можливе тільки якщо у 0 приймає негативні значення. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Інакше D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

За графіком параболи можна визначити коріння. Правильне також протилежне. Тобто, якщо отримати наочне зображення квадратичної функції нелегко, можна прирівняти праву частину виразу до 0 і вирішити отримане рівняння. А знаючи точки перетину із віссю 0x, легше побудувати графік.

З історії

За допомогою рівнянь, що містять змінну, зведену в квадрат, за старих часів не тільки робили математичні розрахунки і визначали площі геометричних фігур. Подібні обчислення давнім були необхідні для грандіозних відкриттів у галузі фізики та астрономії, а також для складання астрологічних прогнозів.

Як припускають сучасні діячі науки, одними з перших розв'язання квадратних рівнянь зайнялися жителі Вавилону. Сталося це за чотири сторіччя до настання нашої ери. Зрозуміло, їх обчислення докорінно відрізнялися від нині прийнятих і виявлялися набагато примітивнішими. Наприклад, месопотамские математики гадки не мали про існування негативних чисел. Незнайомі їм були інші тонкощі з тих, які знає будь-який школяр сучасності.

Можливо, ще раніше вчених Вавилона розв'язанням квадратних рівнянь зайнявся мудрець із Індії Баудхаяма. Сталося це приблизно за вісім століть до настання ери Христа. Щоправда, рівняння другого порядку, способи вирішення яких він навів, були найпростішими. Крім нього, подібними питаннями цікавилися за старих часів і китайські математики. У Європі квадратні рівняння почали вирішувати лише на початку XIII століття, проте пізніше їх використовували у своїх роботах такі великі вчені, як Ньютон, Декарт і багато інших.